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A bstract

Formal verification, where a system is verified with respect to a desired be

haviour, has now become popular in industry, especially in mission and safety 

critical applications. Specifically model checking methods, which can be fully 

automated, are being used extensively to verify that a finite state system meets 

a desired behaviour. The desired behaviour is often specified by a temporal 

logic formula. In this thesis we are interested in efficient algorithms for CTL* 

model checking, where the system to be verified is specified as a Kripke struc

ture and the formula to be checked is given in the branching time temporal 

logic CTL*.

Efficient linear time model checking algorithms were developed by adopt

ing the approach of translating the temporal formulas to nondeterministic au

tom ata on infinite words. At first, the theoretical link between linear time 

model checking and automata theory was shown, and only later did this lead 

to the discovery of efficient model checking algorithms. Recently it has been 

shown that automata-theoretic model checking for branching time temporal 

logic is possible by translating the temporal formulas to alternating automata. 

The aim of the work presented here is to show that, in a similar way to the 

linear time case, this link with automata theory can lead to the development 

of efficient model checking algorithms for branching time temporal logic. In 

the automata-theoretic approach to CTL* model checking the model checking 

problem reduces to checking the nonemptiness of an alternating tree automaton

11
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(more precisely that the language that the automaton recognises is nonempty). 

We show that this nonemptiness check can be reformulated as a 2-player game, 

which we refer to as the nonemptiness game. We develop a novel way, by playing 

so-called new games, of ensuring that results obtained during the nonemptiness 

game can be safely reused in later stages to make the algorithm both space and 

time efficient.

Model checkers for the sublogic CTL of CTL* are very popular in industry 

since for some types of Kripke structure very efficient model checking can be 

done for this logic. Although CTL is not as expressive as CTL* it is often the 

case that a syntactically more succinct CTL* formula can be expressed as CTL. 

An interesting open problem is therefore to determine whether a given CTL* 

formula is equivalent to a CTL formula. Here we show that the structure of 

the alternating automaton translated from a CTL* formula can be used, not 

only to determine whether an equivalent CTL formula exists, but can be used 

to find an equivalent formula (if it exists). We show further that the structure 

of alternating automata can also lead to interesting results for another sublogic 

of CTL* for which model checking is popular, namely LTL. Specifically it is 

shown that CTL* formulas that are both expressible in CTL and LTL can be 

model checked very efficiently in our nonemptiness game setting.

12
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Chapter 1

Introduction

How many people raise an eyebrow at the following names: A320/330/340 

and B777? Maybe we all should, since these are the series numbers of a new 

generation of aircraft developed by Airbus and Boeing respectively, which are 

so-called “fly-by-wire” — their primary flight control is achieved through com

puters. Unfortunately, some of these aircraft have already been involved in 

accidents [Lad]. Even more disturbingly, some of these accidents are reported 

to be computer related:

A 320, Warsaw, 1 4 /9 /9 3 : Pilots were unable to activate any of the braking 

systems until 9 seconds after landing and consequently ran off the end of 

the runway.

A330, Toulouse, 3 0 /6 /9 4 : The aircraft rolled sharply during a test-flight 

and the pilots could not regain control in time to avoid hitting the ground.

Probably the most publicised incident of software failure in the past five years 

was the explosion of the Ariane 5 rocket [Ari]. The explosion was caused by a 

complete loss of guidance information 30 seconds after take off, which caused 

the rocket to veer off its flight path. Here is a quote from the official report on 

the incident:

18
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This loss of information was due to specification and design errors in 

the software of the inertial reference system. The extensive reviews 

and tests carried out during the Ariane 5 development programme 

did not include adequate analysis and testing of the inertial reference 

system or of the complete flight control system, which could have 

detected the potential failure.

Testing

Testing has for a long time been the most common way of determining whether a 

system is robust enough for release in both the software and hardware industries. 

Although testing can find many errors in a system, it cannot guarantee to find 

all the errors [BF91, FW91]. This is rather graphically illustrated by the quote 

above. In today’s rapid development of complex computerised systems a more 

reliable method than testing for detecting errors is required. Formal Verification 

is such a method.

Formal Verification

During formal verification a system is verified to meet a desired behaviour 

by checking whether a mathematical model of the system satisfies a formal 

specification that describes the behaviour. The desired behaviour is specified 

in a formal specification language, with a precise semantics to eliminate any 

ambiguity in what it means for a behaviour to be correct. Furthermore, formal 

verification is exhaustive: a system is correct with regards to its specification 

when all its behaviours satisfy the specification. Therefore, since there is a 

precise meaning of correctness and all behaviours of a system are checked, 

formal verification is clearly superior to testing. Another advantage of formal 

verification is that it can be used during the design phase, when errors are still 

comparatively harmless and easy to correct.
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Unfortunately, formal verification is not the solution for achieving complete 

correctness of a system, since the system is only verified to be correct with 

regards to the behaviours specified in the formal specification1. The problem 

of determining which formal specifications to verify for a system is beyond the 

scope of this thesis.

A utom ated Formal Verification

It is worthwhile to observe why testing is so popular. It is largely an automatic 

procedure; most work goes into determining which tests should be run, but the 

actual tests themselves can be executed automatically and the results observed 

at a later stage. In order for a formal verification technique to be popular 

in industry the automatic nature of testing must be preserved. This is why 

proof based formal verification techniques have not been widely taken up in 

industry. In proof based techniques the model of the system is augmented 

with assertions in a formal specification language and proofs are constructed 

to relate these assertions. Although theorem provers and proof checkers have 

been developed to reduce the effort involved during the construction of these 

proofs, there is still considerable effort and expert knowledge required to use 

these tools [SOR93, BBC+96], Model checking is a formal verification technique 

based on the exploration of the states of a model and can in many cases be fully 

automated.

M odel Checking

Since a model checker explores the reachable state space of a model it can only 

handle finite-state systems2. Many interesting systems are essentially finite- 

state systems: hardware systems, communication protocols, operating system

1A similar situation occurs with testing: only when the appropriate tests are being run can 
one draw any conclusions about the system’s correctness.

2Infinite state systems can be handled by a combination of proof based and state- 
exploration based formal verification.
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kernels, flight controllers etc. Besides that it can be fully automated when 

checking finite-state systems, another advantage of model checking is that it 

can report how an error can be generated within a system. Unfortunately, 

model checking also has a drawback: its performance is dependent on the size 

of the model. For example, when checking a system consisting of concurrent 

components the number of states to explore can grow exponentially in the 

number of components. This is often referred to as the state-explosion problem. 

Alleviating the state explosion problem is a challenging area of research in model 

checking.

Tem poral Logic

Temporal Logic is a popular formal specification language for use with a model 

checker. A temporal logic is a logic augmented with temporal modalities to 

allow the specification of event orders in time, without having to introduce 

time explicitly. For example, a temporal logic with the modalities always and 

eventually will be able to specify the following property: “for all future moments 

in which p holds there will be a future moment in which q holds” . Whereas 

traditional logics can specify properties relating to the initial and final states 

of terminating systems a temporal logic is better suited to describe on-going 

behaviour of non-terminating and interacting (reactive) systems.

Linear and Branching Temporal Logic

There are two main kinds of temporal logics: linear and branching [Lam80]. In 

linear temporal logics, each moment in time has a unique possible future, while 

in branching temporal logics, each moment in time may have several possible 

futures. Linear temporal logic formulas are therefore interpreted over linear 

sequences and are regarded as specifying the behaviour of a single computation 

of a system. Branching temporal logics, on the other hand, are interpreted
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over structures that can be viewed as trees, each describing the behaviour of 

the possible computations of a nondeterministic system. We will refer to linear 

time model checking when the property to be checked during model checking is 

specified as a linear temporal formula and branching time model checking when 

the property is specified as a branching temporal formula.

M odel Checking in Industry

Since the first algorithms appeared in the early 1980’s temporal logic model 

checking has become very popular not only in academia but also in industry. 

In the literature, numerous examples exist for the application of model checking 

in the formal verification of commercially used software and hardware systems 

[BCDM86, CGH+95, tEM95, HWT95, Low96, Kar96, RL97, SECH98]. In fact, 

companies are not only recruiting model checking experts (INTEL, NASA, Lu

cent, Chrysalis, etc.), but in some cases are even selling model checkers (For- 

malCheck from Lucent [For98] and Design INSIGHT from Chrysalis [Ins98]). 

Most of this commercial interest has been centred around two types of model 

checkers: linear time model checkers for the propositional linear temporal logic 

(LTL) and branching time model checkers for computation tree logic (CTL). 

It is interesting to observe the reasons for the popularity of these two types of 

model checkers.

Industrial M odel Checking: CTL

CTL model checkers were the first model checkers to be introduced [CE81, 

QS82] and as such had a head start, even more so when the original algorithms 

were improved to show that model checking can be done in time linear in the size 

of the state graph (reachability graph of states) for the system and the length 

of the formula. Unfortunately it also had the drawback that the complete state 

graph had to be kept in memory throughout the model checking procedure
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and therefore due to the state-explosion problem it had limited applicability. 

A major breakthrough for CTL model checking came with the realisation by 

McMillan [McM92a] (after initial work by Bryant [Bry86]) that it is unnecessary 

to store the state graph explicitly during model checking. He encoded the 

state graph as an ordered binary decision diagram (OBDD) that in many cases 

would require less memory than when the graph was stored explicitly. Model 

checking is then performed on these OBDD encodings by applying boolean 

functions to them according to the fixpoint characteristics of the CTL formulas 

to be checked. Unfortunately, for the OBDD encodings to be efficient, the state 

space must exhibit some form of regularity. The good news is that for the state 

graphs of synchronous hardware systems this is often the case, and as such 

OBDD based CTL model checkers found their niche market so to speak.

Industrial M odel Checking: LTL

When Pnueli first showed that temporal logic is suitable for specifying proper- 

ties of reactive system, the logic that he used was a linear time temporal logic 

[Pnu77]. Ever since then linear time has been the logic of choice for writing 

temporal specifications for systems [MP92]. Although many different types of 

linear time temporal logics were used for specifying reactive systems, most of 

the model checking work centred around the use of LTL. LTL model checkers 

were however less popular than CTL model checkers, since their model checking 

complexity was exponential in the length of the formula (whereas it is linear 

for CTL). The breakthrough for LTL model checkers came when it was realised 

that the complete state graph need not be kept in memory throughout model 

checking. In fact, these model checkers were often referred to as “on-the-fly” 

model checkers [VW86b, JJ89, CVWY92] since the reachable states were gen

erated during the model checking procedure. Furthermore, only the parts of 

the state graph required to (in)validate the formula would be analysed (this 

is often referred to as local model checking). Interestingly, the reason for the
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discovery of efficient model checking algorithms for LTL, was due to the close 

relationship between linear temporal logics and the theory of autom ata on in

finite words [VW86b, VW94], The basic idea is to associate with each formula 

an automaton on infinite words that accepts exactly all the computations that 

meet the behaviour specified by the formula. This enables the model checking 

problem for LTL to be reduced to the automata-theoretic problem of testing 

nonemptiness of an automaton.

M odel Checking: CTL versus LTL

Although the OBDD based model checkers can in some cases handle larger 

systems than the explicit state exploration approach of the LTL model checkers, 

they do suffer from another disadvantage: model checking may require expert 

knowledge and is in some cases an interactive procedure. This is due to the fact 

that the efficient representation of an OBDD is sensitive to the ordering of its 

boolean variables [Bry86, Bry92]. In many cases to obtain an efficient variable 

ordering3, i.e. one for which the model checker will not run out of memory, 

expert knowledge about the system to be checked and also about the way the 

OBDD encodings work is required [Dil96].

Since practical model checking algorithms for LTL are based on automata 

theory and those for CTL on fixpoint characterisations of the formulas com

bined with OBDD encodings it is hard to compare them adequately. Clearly 

a simple comparison on their respective (theoretical) model checking complex

ities does not give a satisfactory measure for comparing their applicability for 

industrial-scale model checking. Furthermore, of course, CTL and LTL can

not be compared in expressiveness either [BG94]. W hat is required is a model 

checking algorithm that would be able to check both CTL and LTL properties 

in the same setting and be practical (efficient) enough for undertaking model

3Note that in some cases no efficient variable ordering exists.
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checking of industrial-strength systems.

1.1 Thesis Goal

Constructing such ail efficient model checking algorithm is the goal of this 

thesis. In order to achieve this we define (and implement) a model checker 

for the branching time temporal logic CTL* that contains as sublogics both 

CTL and LTL. This will enable the model checking of, not only CTL and LTL 

properties, but also properties that cannot be expressed by either.

Although LTL model checking can be done with an automata-theoretic ap

proach, it has only comparatively recently been shown that by using alternating 

tree automata this is also possible for CTL*[Ber95]. Essentially the CTL* for

mula to be checked is translated to a special type of alternating automaton, 

hesitant alternating automaton (HAA), and the model checking problem then 

reduces to checking the nonemptiness of this type of automaton. In [Ber95] two 

different algorithms are presented for doing the nonemptiness checking: one is 

time efficient and the other is space efficient. Although this was a major first 

step, what is required is an algorithm that is both time and space efficient.

We extend the work of [Ber95] by showing that recasting the nonemptiness 

problem of alternating tree automata as a special type of a two-player game, 

called the nonemptiness game, allows CTL* model checking that is both time 

and space efficient. We show that the rules for the nonemptiness games are 

different when checking CTL formulas (CTL nonemptiness games) than when 

LTL formulas (LTL nonemptiness games) are checked. In fact it turns out 

that CTL nonemptiness games are in general of higher complexity than LTL 

nonemptiness games. This is different from the traditional model checking 

complexities, where LTL model checking has higher complexity.

We show that the differences in the rules of the CTL and LTL nonemptiness
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games manifest themselves in the structure of the HAA4 translated from the 

formula to be checked and can be used as a means to determine whether a CTL* 

formula has an equivalent CTL and/or LTL formula. Determining whether a 

CTL* formula has a CTL equivalent has been an open problem since 1988 

[CD88]. We not only show that with the aid of HAA this problem can be 

solved, we also show how to find the equivalent CTL formula if one exists. 

This could enable the use of OBDD based CTL model checkers whenever an 

equivalent CTL formula exists for the CTL* formula to be checked.

Since an aim is to construct a practical model checking algorithm close at

tention to the implementation details will be given throughout. In fact, this is 

a secondary goal of the thesis: to give the reader enough detail about imple

mentation issues to allow the algorithm described here to be implemented by 

him/her.

1.2 Thesis Layout

The thesis consists of the following three parts:

B ackground: Chapter 2 introduces CTL* and Chapter 4 (except section 4.7) 

introduces the automata-theoretic approach to model checking.

M odel C hecking R eview : Chapter 3.

P ra c tic a l M odel C hecking: Section 4.7 introduces the logic LinearCTL*. 

Chapter 5 gives the basic algorithm, Chapter 6 shows the different versions 

of the algorithm for CTL and LTL as well as showing how CTL* formulas 

can be classified as either CTL and/or LTL or strictly CTL*. Chapter 7 

shows how the algorithm can be used for practical model checking. Sec

tion 4.7 was first published in [VBF+97], section 7.2 first appeared in

4Throughout the thesis, in an abuse of notation, the abbreviation HAA stands for either 
hesitant alternating automata or hesitant alternating automaton, depending on the context.
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[VB96] and section 7.3 in [VBF+97].

Here follows a brief synopsis of each chapter:

C h a p te r  2 contains the syntax and semantics of CTL*. The use of CTL* 

as a specification language for properties of reactive systems is also illustrated 

by some examples. The linear and branching sublogics of CTL* are briefly 

compared with regards to their expressive power and how they are used for 

model checking.

C h a p te r  3 presents an overview of model checking for CTL, LTL and CTL*. 

It starts by giving characteristics that can be used to classify different types of 

model checkers and continues by describing different model checking approaches 

according to this characterisation. This is by no means an exhaustive overview 

of model checkers, but the model checking approaches selected for the review 

have some form of significance in model checking history: either being the first 

of their kind, or illustrations of different approaches.

C h a p te r  4 focuses on automata-theoretic model checking. It begins with an 

overview of the use of first nondeterministic automata and then alternating 

automata as an automata-theoretic counterpart for CTL*. The remainder of 

the chapter is devoted to translating CTL, LTL and CTL* formulas to HAA in 

a similar fashion to that proposed in [Ber95]. It is also shown how the structure 

of the translation rules for translating LTL to alternating word autom ata can 

be exploited to define a sublogic of CTL* called LinearCTL* tha t allows a 

linear translation from the formulas of the logic to HAA. Note, in general, this 

translation from CTL* to HAA is exponential. Lastly, some implementation 

issues for translating formulas to automata are discussed.

C h a p te r  5 introduces the nonemptiness game for HAA. The rules of the game 

are first given and are followed by a first attem pt at implementing the game. 

It is shown that in order to make it time efficient information must be stored
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during the game to be reused in later stages. This requires the novel approach 

of playing new games to ensure the information stored is correct. Pseudo code 

for the algorithm is given and explained in detail. The chapter concludes by 

comparing the algorithm to related work.

C h a p te r  6 contains the main contribution of the thesis. Here it is shown how 

the structure of the HAA can be exploited to optimise the nonemptiness game 

when CTL or LTL formulas are being model checked. Combining the rules for 

CTL and those for LTL formulas and adding a trivial proviso turns out to be 

sufficient to also play efficient nonemptiness games for full CTL*. Lastly, it is 

shown how to classify CTL* formulas, as either CTL, LTL or neither, and how 

to utilise this information for efficient model checking.

C h a p te r  7 takes a look at the more practical issues involved in model checking. 

A structure for a model checking system is discussed in which the model check

ing algorithm introduced here can be fitted. This structure allows the model 

checking of different input formalisms with little change to the existing system. 

Two novel approaches to alleviate the effect of the state-explosion problem dur

ing model checking are introduced. Lastly, it is shown how the model checker 

described in this thesis is used to check properties of asynchronous hardware 

systems.

C h a p te r  8 contains a retrospective view of the goals and achievements of the 

work presented as well as some future extensions being planned.
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CTL* : Syntax, Sem antics and  

U sage

Pnueli, in his seminal 1977 paper [Pnu77], introduced the use of temporal logic 

to the specification of program behaviour. Since then much research has gone 

into developing different temporal logics that are suitable for different applica

tions (an excellent survey can be found in [Eme96]). Here we will focus on the 

branching time logic CTL* [EH86].

2.1 Syntax and Semantics of CTL*

CTL* can express both linear and branching time properties, and is therefore 

more expressive than the linear time logic LTL [LP85] and the branching time 

logic CTL [CE81, CES86]. In fact, both these logics are sublogics of CTL*. 

For technical convenience only positive CTL* formulas will be used here, i.e. 

formulas with negations only applied to atomic propositions. Any CTL* formula 

can be transformed into a positive form by pushing negations inward as far 

as possible by using De Morgan’s laws and dualities. There are two types of 

formula in CTL*: formulas whose satisfaction is related to states, state formulas,

29
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and those whose satisfaction is related to paths, path formulas. Let q G Props , 

where Props is a set of atomic propositions. The syntax of CTL* state (S ) and 

path formulas (P) is then given by the following two BNF rules:

S ::= true \ fa lse  | g | - « g | S A S | S V S |  AP j ET?

P S [ P  A P j P  V P | X P  | P U P | P  F  P

A  (“for all”) and E  (“there exists”) are referred to as path quantifiers and 

X  ( “next”), U (“Until”) and V  (“release”) as path operators. The sublogics 

CTL and LTL are now defined as:

CTL Every occurrence of a path operator is immediately preceded by a path 

quantifier.

LTL Formulas of the form A P  where the only state subformulas of P are 

propositions.

The semantics of CTL* is defined with respect to a Kripke structure K  — 

(Props, S, R, Sq, L), where Props is a set of atomic propositions, S  is a set 

of states, R  C S  x S  is a transition relation that must be total (for every 

Si € S  there exists a Sj such that (Si,Sj) G R), so G S  is an initial state and 

L : S  -» 2Praps maps each state to the set of atomic propositions true in that 

state. For (si,Sj) G R , sj is the successor of si and s* the predecessor of Sj. 

The branching degree, i.e. the number of successors, of a state s is denoted by 

d(s). A path in K  is an infinite sequence of states, ir =  so, si, «2 , • ■ ■ such that 

(si, Si+i) G R  for i > 0. The suffix si, s^+i,. . .  of 7r is denoted by 7r \  K, s |= p  

indicates that the state formula <p holds at state s and K, ir |= ifj indicates the 

path formula if) holds at the path 1r of the Kripke structure K . s j= ip and 7T |= ip 

are written when K  is clear from the context. The relation J= is inductively 

defined as:

• Vs G S, s (= true  and s ^  fa lse
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• s \= p  for p  €  Props  iff p  G L (s )

•  s \= -ip for p  G Props  iff p  ^ L(s)

• s \= (pi A <f2 iff s f= and s \= <p2

• s )= ipi V iff s f= </?i or s |= 992

• s f= 4̂*0 iff for every path t v  = so, s i , . . with so =  s, then 7r j= 0

• s \= Eifj iff there exists a path n ~  so, s i , . . with so =  s, and n  |= 0

• 7T |= <p for a state formula <p: iff sq |= (p where 7r — so, s i , . . .

• 7r |= 0 i  A ip2 iff vr |= "01 and 7r |= -02

• 7T |= 01 V 02 iff ?T [= 01 Or 7T f= 02

• IT f= Xlfj iff 7T1 I=  0

• tt \= 0 i  U 02 iff >  0 such that 7rl |= 02 and V̂ ‘,0 < j  < i, 7rJ |= 0 i

• 7r |= V 02 iff Vz >  0 such that if tt2 02 then 3j,0 <  j  < i, 7rJ (= 0 i

A state s satisfies Aijj (Eip) if every path (some path) -k from the state s satisfies 

0 , while a path satisfies a state formula if the initial state of the path does. 

Xij) holds of a path when 0  is satisfied in the next state on the path, whereas 

01 U 02 holds of a path if 0 i  holds on the path until 02 becomes true. V  is the 

dual of U since _>(0i U 02) =  —i0i V  -i02 and is referred to as the “release” 

operator: 0 i  V 02 holds for a path, if 02 remains true until 0 i  “releases” the 

path from its obligation.

The following well known abbreviations will also be used:

Ftp — true  U <p — ip holds in a future (hence the “F”) state on a path. Also 

referred to as the “eventually” operator.
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Gip — fa lse  V  ip —  ip holds globally (hence the “G”) on a path. Also referred 

to as the “always” operator.

The ipi U ip2 operator is a strong until, since 02 must eventually become 

true. A weak until operator, W , can be defined in terms of the strong until: 

01 W  02 =  Gif)i V 0 i U02 • Note for the weak until to be satisfied ip2 need not 

become true. In a similar fashion the V operator is a weak release operator, 

whereas the dual of W , call it R, defined as 0 L R  ip2 = - i ( i0 i  W  ->02)» is a 

strong release operator. These operators, W  and R , will only be used in the rest 

of the thesis to show translations between equivalent CTL and LTL formulas. 

Two formulas 0 i and 02 are equivalent if for all Kripke structures K we have 

that K  {= 0 i iff K  |= 02-

The closure of a CTL* formula 0 , cl (ip), is defined as all the state subfor

mulas of ip including 0  but excluding true and false. For example, cl(A (EXp  

V  AXq))  =  {A (E X p  V A X q ) ,E X p ,p ,A X q ,q } .

2.2 CTL* for Property Specification

Temporal logic is mostly used in the specification and verification of reactive 

systems [HP85, Pnu86]. An important property of reactive systems is that they 

interact continuously with their environments and do not compute a final value 

on termination — in fact, they are usually designed not to terminate at all. 

A reactive system is also fundamentally concurrent, firstly, since it executes 

concurrently with its environment, but also the system itself generally consists 

of concurrent processes. The temporal specifications therefore tend to specify 

properties of the interaction between processes in the reactive system.

Since reactive systems are so diverse, ranging from operating systems, pro

cess control systems, communication protocols through to microprocessors, the 

nature of the temporal specifications have also been numerous. Originally two
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types of specification were distinguished [Lam77]:

Safety  P ro p e rtie s : state that “something bad never happens” (a program 

never enters an unacceptable state)

Liveness P ro p e rtie s : state that “something good will eventually happen” (a 

program eventually enters a desirable state)

Safety properties are expressed by AG~*p, where p characterises a “bad” state. 

Mutual exclusion, AG(~^critl V ~>crit2), is a well known safety property. Live

ness properties are more difficult to classify syntactically, but in general they are 

formulas with the F  operator present. For example1, AG (sent Freceived),

is a liveness property of a protocol that specifies whenever a message is sent 

by the sender it will always eventually be received by the receiver. Manna and 

Pnueli extended the liveness classification to give a more appropriate classifica

tion of LTL formulas [MP92]. This classification is given below with an example 

of a formula in each class:

G u aran tee : Specifies that an event will eventually happen, but does not promise 

repetitions. [AFp: At least one state on a path satisfies p]

O bligation: This is the class of properties that cannot be expressed by safety 

and guarantee formulas alone and is therefore a disjunction of the two 

classes. [A(Gp V Fq)\ Either p holds always on a path or q holds at some 

state.]

R esponse: Specifies that an event will happen infinitely many times. The fact 

that for every stimulus there is a response in a system can be specified by 

this class. [AGFq: Infinitely many states on a path satisfy p.]

P ers is ten ce : Specifies the eventual stabilisation of some system condition after

1ipi —»• ip2 is defined in the usual way as V ip2 - Note, if ij>\ $  Props  then the negation 
must be pushed inside.
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an arbitrary delay. [.AFGp\ For all states on a path from a certain point 

on p holds.]

R eac tiv ity : This is the maximal class and is formed from the disjunction of 

response and persistence properties. [A(GFp V FGq): Either the path 

contains infinitely many states for which p holds or from a certain point 

on q holds continuously.]

Another classification that is important when specifying properties is that 

of fairness [Fra86], Below follow the main fairness classes with example speci

fications:

U nco n d itio n a l F airness - AG Fq : q holds infinitely often

W eak F airness - A(FGp  —> GFq): if p is continuously true then q must be 

true infinitely often. Note, in positive form A(FGp  —)■ GFq) is w ritten as 

A(GF~yp V GFq).

S tro n g  F airness - A(GFp  —> GFq): if p is true infinitely often then q must 

be true infinitely often. Note, in positive form A(GFp GFq) is written 

as A{FG~^p V GFq).

The fairness classes are subsumed within Manna and Pnueli’s classification, 

since unconditional and weak fairness are both response properties and strong 

fairness is a reactivity property.

2.2 .1  E xam p le

Consider the mutual exclusion problem for two processes where each process 

(i = 1,2) can be in one of three code regions: noncritical (A^), trying (T*) or 

critical (Ci). A binary semaphore S  is used to protect the critical region. The 

value of the semaphore is indicated by Si in Figure 2.1, where i can be 0 or 1.
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A process can only enter its critical region from its trying region if the value 

of the semaphore is 0. When a process enters its critical region the value of 

the semaphore becomes 1 and on leaving the critical region and entering the 

noncritical region the value of the semaphore becomes 0 again.

Each state is labelled with the values of all variables in that state. The 

set of states W  is therefore given by (P i,P2, Sema), where Pi can be Ti, N{ 

or Ci, with i = 1,2 and Sema  is either So or <Si- The Kripke structure for 

this system is therefore given by K  = (2Props,W, R , u>q, L), where Props = 

{ N i ,N 2,T i ,T 2, Ci, C2, So, Si}, the transition relation and the labelling is given 

in Figure 2.1 and the initial state, Wq, is (N \N 2Sq).

Figure 2.1: Transition relation for the mutual exclusion system

Here are three examples of specifications with their truth-values for the

mutual exclusion system modelled by K .

Safety  P ro p e r ty  (Mutual Exclusion): The two processes will never be in their 

critical regions at the same time, ip — AG(->Ci V ~'C2), with K ,w o |= ip.

G u aran te e  P ro p e r ty  (Safe Liveness): Neither of the two processes can enter 

their critical regions until one of them receives the semaphore (semaphore 

state become Si). ip =  A((-i(7i A -■C2) U Si), with K ,w q \= ip.

R esponse P ro p e r ty  (Absence of Starvation): Once a process has entered its
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trying region it will eventually enter its critical region, ip — AG{T\ —» 

F(Ci)). Due to the possible unfair behaviour in which process 2 can 

be continuously given the semaphore, seen in Figure 2.1 by the cycle 

m.JVa.S'o), (Tu T2,Sq), ( T ^ S i ) ,  (Tl,T2,S 0), K ,w 0 ^  A fairness 

constraint can be added to exclude this behaviour resulting in K , wq |= 

A(?(Ti —> (F(Ci)WGF(C2 )))- Essentially the constraint GF(C2) specifies 

that the cycle given above should be considered acceptable behaviour.

2.3 Expressiveness: Linear vs. Branching

In the previous section classifications of temporal formulas, used to express 

properties of reactive system, were given for the linear fragment of CTL*. Do 

they still hold for the strictly branching time logic CTL? No. When considering 

the syntactic definitions of the classes as given in [MP92] it is clear that safety 

properties have equivalent CTL formulas. Guarantee properties however don’t; 

for example, the formula AF{pf\Xp)  is not expressible in CTL [EH86]. Further

more, since in the syntactic definition all the other classes (obligation, response, 

persistence and reactivity) build on guarantee properties, none of the classes 

can be fully expressed in CTL. This, however, does not mean that a meaningful 

subset of each class doesn’t have a set of equivalent CTL formulas. For example 

AFp  (guarantee), A(Gp V Fq) (obligation), AGFp  (response) all have equiva

lent CTL formulas respectively AFp, A((p A ->g) W  AFq) and AG AFp. If we 

consider the fairness classification, then both unconditional [AGAFq] and weak 

fairness [AG(A(AF(-^p V q) W  ~̂ p) A A(AF(-^p V g) W g))] can be expressed in 

CTL, but strong fairness cannot.

It is of course easy to see which CTL formulas cannot be expressed by an 

equivalent LTL formula: all formulas that include an existential path quantifier 

(E). One such formula is AGEFp that states from all states in the system it 

is possible to reach a state where p holds. This type of formula can therefore
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be used to show absence of deadlock or livelock in a system. For example, 

the mutual exclusion system from Figure 2.1 contains no deadlocks or livelocks 

since the initial state can be reached from all states of the system, i.e. K , wq (= 

A G E F (N i A N 2 A Sq). There are also CTL formulas that only contain universal 

(A) quantifiers, but are still not expressible in LTL, for example AFAGp [CD88],

Lastly, when considering conjunctions or disjunctions of some of the above 

formulas we can construct a formula that is a CTL* formula, but neither CTL 

nor LTL, for example AFGp A AFAGq. CTL* is therefore strictly more ex

pressive than both CTL and LTL, but CTL and LTL cannot be compared in 

expressiveness.

2.4 CTL* for M odel Checking

When writing temporal specifications that are to be used by a model checker, 

many factors must be considered, first and foremost the capabilities of the tem

poral logic at your disposal. For example, if you can express a property to be 

checked in both LTL and CTL, LTL is to be preferred, since LTL formulas are 

more succinct and readable than CTL, one reason for this is that it does not 

require unnecessary path quantifiers before all the temporal operators. How

ever, an argument against the use of LTL is that its model checking algorithm 

is exponential in the size of the formula [LP85]. Unfortunately, writing an 

equivalent formula in CTL (for the LTL formula to be checked) might not be 

the solution. For example, the LTL formula A(Gpo V Gpi V . . .  V Gpn) has an 

equivalent CTL formula that is exponential in n. Furthermore, if the original 

LTL formula cannot be expressed in CTL, then writing it in LTL is the only 

option. It must be noted here that CTL model checkers, specifically those based 

on OBDDs [BCM^OO, McM92a], can in certain cases outperform LTL model 

checkers by orders of magnitude (on the same Kripke structure and equivalent 

formula).
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Most model checkers available today are either for CTL or LTL, and hence 

the option of which logic to use is out of the practitioners’ hands, so to speak. 

It is our experience of using a CTL* model checker for the validation of asyn

chronous hardware designs [VBF+97] that linear time formulas are written more 

often, in as much as branching time formulas are used only when no equivalent 

linear time formula exists (e.g. AGEFp). Classifying the properties that we 

write according to the classification given in section 3.1 it follows that safety 

[ACTp] and response [AG(p -p- Fg)] properties are written frequently. Fairness 

properties, in all three categories, are also used regularly for excluding unfair 

behaviour of a circuit whilst model checking response properties (in case of it 

being strong fairness the property then becomes a reactivity property).

Lichtenstein and Pnueli observed that in most cases the size of the formula 

is much smaller than the size of the Kripke structure [LP85]. We believe it 

is counter productive to express too complex a property, since if the property 

does not hold for a design it is difficult to see what is wrong in the design, or 

even worse, the design may be correct but the property does not capture the 

property that the user was intending.

2.5 Concluding Remarks

Although LTL is more popular for expressing properties of reactive systems 

[Pnu77, MP92], the model checking community tend to favour CTL model 

checkers [CES86, McM92a]. An important issue is therefore finding equivalent 

LTL and CTL formulas. One of the aims of this thesis is thus to answer the open 

problem [CD88]: Given a CTL* formula, is there an equivalent CTL formula1? 

In section 2.3 we gave some CTL equivalences for LTL formulas tha t are non

trivial, for example the formula for weak fairness. In Chapter 6 it will be shown 

how these were obtained.
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A Tour o f M odel Checking  

A pproaches

A model checker determines whether a model of a system, given as a Kripke 

structure, satisfies a temporal logic specification. Model checking has enjoyed 

strong support in the formal methods (verification) community, since it can be 

fully automated in most cases, for example in the particular case we are con

cerned with here: models given as finite-state Kripke structures and properties 

specified in CTL*. Pull automation means that the user of the model checker 

need not know the inner-workings of the system, thus making it more widely 

applicable to the computer science community as a whole. This is in marked 

contrast with theorem proving, where user input and knowledge of the system 

is often crucial to the successful completion of a verification task.

The first model checking algorithms were independently developed in the 

early 19805s by Clarke and Emerson [CE81] and Queille and Sifakis [QS82]. 

Although both these model checkers used a branching time temporal logic as a 

specification language, the former is better known since it introduced the logic 

CTL. In [CES86] the complexity of the CTL model checking algorithm was

39
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reduced to being linear in both the number of states in the Kripke structure, 

\S\, and the size of the formula, ] /| (the original algorithm was polynomial in 

\S\ and |/ |) .  Clarke and Sistla were the first to analyse the complexity of LTL 

model checking, showing that it is PSPACE-complete [SC85]. In [LP85] LTL 

model checking is shown to be linear in the size of the Kripke structure, but 

exponential in the size of the formula. Emerson and Lei [EL87] extended this 

result by showing that CTL* has the same complexity as LTL model checking.

Here we will look in more detail at the different techniques employed in 

the development of model checkers for CTL and LTL. Rather than grouping 

the algorithms by whether they are CTL or LTL model checkers, we classify 

existing work according to the model checking approach that was adopted.

3.1 M odel Checking Classification

CTL and LTL model checkers can be classified by two characteristics: whether 

they are structural or automata based and whether they are local or global 

algorithms.

3.1 .1  S tru ctu ra l versu s A u to m a ta  B a sed

Model checking algorithms based directly on the structure of the formula to be 

checked fall into the structural class. Both the first two model checking algo

rithms [CE81, QS82], mentioned above, fall into this category. Automata based 

algorithms can be thought of as indirectly based on the structure of the formula, 

since the formula is first translated to an automaton and the model checking- 

then proceeds in an automata-theoretic fashion. Structural algorithms therefore 

have the advantage that they do not require an extra translation phase, whereas 

the principal advantage of the automata approach is that existing methods and
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results from automata theory can be used. Note, however, that the automa

ton translated from a formula can be more succinct than the original formula 

and hence, despite the time spent during the translation phase, can allow more 

efficient model checking.

3 .1 .2  L ocal versu s G loba l

A global model checker labels all the states in a Kripke structure in which a state 

formula holds. A local model checker, on the other hand, answers the question 

whether a state formula holds in the initial state of a Kripke structure. In the 

global case, all the states in the Kripke structure need to be visited, whereas 

in the local case it might be possible to label the initial state without visiting 

all the states. In the worst-case all the states must be visited by a local model 

checking algorithm.

3 .1 .3  R oad  M ap

Structural Automata
Global CTL [CE81, QS82, McM92a] CTL [BVW94]
Local LTL [LP85, Fis92, BCG95] LTL [VW86b, BFG89, CVWY92]

CTL [VL93] CTL [BVW94]

Table 3.1: Classifying CTL and LTL Model Checkers

The algorithms which will be discussed in the remainder of the chapter are 

classified in Table 3.1. Note however that this is by no means an exhaustive 

survey of CTL and LTL model checkers; the intention is rather to show examples 

of the major approaches for developing CTL and LTL model checkers. An 

interesting observation from Table 3.1 is that all the LTL model checkers we 

survey are local model checkers. The reason is that the satisfaction of LTL 

formulas are determined with respect to paths in the Kripke structure, and 

since all reachable states are on a path from the initial state of the Kripke



www.manaraa.com

CHAPTER 3. A  TOUR OF MODEL CHECKING APPROACHES 42

structure it follows that a local model checking algorithm is the more natural 

approach. In contrast, a CTL formula is true or false in a state of the Kripke 

structure and hence either a local or global algorithm can be developed for CTL 

model checking.

To the best of our knowledge all the algorithms discussed have been imple

mented with the exception of [LP85], [VW86b] and [BVAV94]h Implementa

tions of improved versions of the algorithms of [LP85] and [VW86b] are dis

cussed in respectively [BFG89] and [CVWY92]. Our algorithm for obtaining 

efficient CTL* model checking, discussed in the remaining chapters of this the

sis, indicates how the two algorithms of [BVW94] can be improved to allow an 

efficient implementation.

3.2 Global and Structural

3 .2 .1  C larke, E m erson  and S is tla

[CE81, CES86]

This algorithm requires the complete Kripke structure to be checked to be 

stored in memory throughout the model checking process. The length of a 

formula is calculated in terms of the maximum depth of the state subformulas 

within it. For example, for ip = AG ((AFp  V EGp) U AFq), p  and q are of 

length 1, AFp, EGp  and AFq  are of length 2, AFp  V EGp  is of length 3 and 

length(ip) = 4. The algorithm operates in stages when checking a formula ip in 

a Kripke structure K: first, all the states in which state subformulas of length 

1 hold are labelled; then in the next stage those of length 2 are labelled in 

all states. After stage i all subformulas of length smaller or equal to i will 

be labelled at the states in which they are true. The algorithm terminates 

when all the states for which the original formula holds are labelled, i.e. when

In this paper two algorithms for CTL are given, one local and one global (see section 3.4.1).
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i = length(ip). If for the initial state sq of K  we have that ip is labelled at that 

state then AT, so |= ip. The algorithm is structural, since the labelling at each 

stage is dependent on the structure of the formula and it is global since at every 

stage, all the states in which a subformula is true are labelled.

Labelling states with the negations of propositions, A, V, A X  and E X  is 

straightforward. The more interesting cases are those for U and V  . Here 

only a brief description of the algorithms for labelling states with universal and 

existentially quantified U formulas (V, being the dual of U, is similar) is given; 

the interested reader is referred to [CES86] for a more detailed description. 

First, note that because states are labelled with the shortest subformulas first, 

when a formula of the form ip\ U ip2 is to be labelled, both ipi and V>2 ar® 

already labelled in all the states they are true. A state is labelled by a formula 

of the form E(ip\ U 1P2 ) by first finding all the states in which ip2 is labelled 

and working backwards, by using the converse of the transition relation, to find 

all the states that can reach these V;2~labelled states on a path on which every 

state is labelled by ip\. All such states are labelled with E(ip 1 U 1P2 ). States are • 

labelled with formulas of the form ip = A(ip\ U 1P2 ) with a depth-first algorithm: 

in the current state if ip2 is labelled then ip is also labelled, if ip2 is not labelled, 

but ipi is, the successor states are traversed in a depth-first manner; as soon 

as a cycle on the current path is found or a state where neither ipi nor ip2 are 

labelled then ~>ip is labelled. An important aspect of this algorithm is tha t a 

state store can be maintained that contains all the states already visited by the 

algorithm; when a state is revisited its successors are not traversed again and 

the algorithm proceeds depending on the labelling of the revisited state. Due 

to the use of the store, each state in K  will only be visited once during the 

labelling of a A(ip\ U 1P2 ) formula.

The complexity of the algorithm is 0(length(ip) x l^l), where ip is the for

mula being checked and |.!?| is the number of states in the Kripke structure. In 

[CES86] the algorithm is extended to handle fairness, by adding a component
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to the Kripke structure, call it F, that contains a collection of predicates on the 

states of K .  A path p is now a fair path iff for each g 6 F, there are infinitely 

many states on p which satisfy predicate g. The fair version of CTL has the 

same semantics as CTL, except that the path quantifiers range over fair paths.

3.2 .2  Q u eille  and  S ifakis

[QS82, QS83]

They use a branching time logic with similar operators to those of CTL: 

POT{iff), potentially if), is the same as EFip, I N E V fy ) ,  inevitably '*/>, is the 

same as AFip, ALL{iff), always ip, is the same as AGip and SOME(ip), some

times ip, is the same as EG iff In [QS83], they extend the operators to be similar 

to existential and universal quantification of U and V  operators, e.g. P O T  {iff) 

becomes POT{ipi,ip2 ) {— E(ipi U ipi))- The algorithm is based on the fixpoint 

characterisations of the operators and is dependent on the pre-image of a state 

being available (the states from which the current state can be reached). The 

actual algorithm will not be elaborated on in this section since it is very similar 

to the one on which OBDD based model checkers are based, which is described 

in Appendix A. The original algorithm of [QS82] is extended, in a similar fash

ion as described in the previous section, to handle fairness [QS83] (called fair 

reachability of predicates). They also show how formulas expressed over fair 

paths can be transformed to equivalent formulas over unfair paths. Since their 

notion of fairness is similar to unconditional and weak fairness this result is 

similar to our own translations given in section 2.3.

3 .2 .3  M cM illan

[McM92a]
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McMillan first considered model checking without representing the transi

tion relation explicitly in 1987. Instead he used an ordered binary decision 

diagram (OBDD) encoding of the transition relation. Since then OBDD based 

model checking, or symbolic model checking as its often referred to, has become 

very popular [McM92a, McM92b, EFT91, HDDY92, HD93, HBK93, GL93, 

DB95, BMS95]. In Appendix A an introduction to OBDDs is given as well 

as a detailed description of how OBDDs are used for CTL model checking.

The global algorithms have a serious drawback in practice due to the fact 

that the complete transition relation (state graph) must be kept in memory 

throughout the model checking process. OBDD based model checkers help to 

combat this, since they are global and can in some cases handle much larger 

systems than those where the state space is encoded explicitly.

The early (non-symbolic) model checkers could only handle models with at 

most 107 states, whereas symbolic model checkers quickly pushed this limit to 

1020 states [BCM+ 90, McM92a] and even 10120 [BCL91], albeit only for well 

chosen examples. Although this might seem overwhelming evidence for using 

symbolic model checkers, it is however a fact that many models still suffer 

from a state explosion when the variable ordering within the OBDD is not well 

chosen. At AT&T, for instance, models are first model checked using non- 

symbolic methods, and only when those fail (i.e. run out of memory) do they 

use OBDD based model checking[Kur95]. Unfortunately, computing a variable 

ordering for an OBDD such that the OBDD is of minimal size is NP-complete 

[THY93], Developing heuristics for finding an efficient ordering and even doing 

on-the-fly reordering of variables in an OBDD is an active area of research 

[Bry86, BMS95]. For some functions, most notably multiplication [Bry91], the 

size of the OBDD grows exponentially in the word size regardless of the variable 

ordering.
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3.3 Local and Structural

3.3 .1  V ergau w en  and  L ew i

[VL93]

This interesting and above all practical algorithm was the first local CTL 

model checker to be developed. Or more correctly, specifically for CTL, since 

much of the early work on local model checking was done for the /i-calculus 

[SW89, SW91, BS90] and CTL has a straightforward translation to the /i- 

calculus [Dam92j.

The algorithm proceeds depth-first through the Kripke structure and only 

labels states with formulas when required. When trying to label a state with a 

formula ip some of the subformulas of ip might be required to be labelled first. 

For example when a state is to be labelled with ip = A(ipi U 1P2 ) then the algo

rithm will proceed to first check whether ip2 is labelled at the state by making 

a recursive call if ip2 is not already labelled. This is the opposite approach to 

the global algorithm of Clarke, Emerson and Sistla where the subformulas are 

labelled on all the states in which they hold regardless of whether they will be 

required for labelling any other formulas.

Negation, boolean connectives and the next formulas (AX and EX) are 

again straightforward to label in a depth first manner. In the A(ipi U 1P2 ) 

case the same algorithm as in [CES86] is used, but in the need-driven fashion 

described above. The interesting case is labelling E(ip\ U 1P2 ) in a depth first 

manner. Note in [CES86] this was achieved by first computing all the states in 

which ip2 holds and then working backwards. In the depth-first approach the 

problem is that a straightforward solution for labelling E(ipi U 1P2 ) exists, but 

this algorithm runs in quadratic time when nested E {... U . . .)  formulas are 

encountered. The problem arises, because during the labelling many states are 

visited, but none of the states are labelled, only the initial state is labelled. A
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novel approach of keeping track of the visited states that can also be labelled 

with E ( iJji U ijj2 ) is developed. In essence their algorithm traded space for time.

3 .3 .2  L ich ten ste in  and  P n u eli

[LP85]

This was one of the first algorithms for doing LTL model checking. They 

define a closure for an LTL formula, C L(^), and show that the size of this 

closure \CL{^)\ <  5 |^ |. This closure is essentially a maximal tableau that 

characterises all the models for the formula. When checking whether a formula 

is true in the start state of a Kripke structure K , the product of the state 

transition graph of K  is taken with the closure of the formula (referred to as 

the product graph P). Each node in P  therefore consists of two components 

( s ,  / )  where s 6  K  and /  G C Lty).  The number of nodes in P  is bounded by 

\S\ x 25M , where l^l is the number of states in the Kripke structure and |^ | refers 

to the size of the formula. The rest of the algorithm is based on the fact that 

any infinite path in P  will get trapped within a strongly connected component 

(SCC) of P . Since, during the construction of P  all the formulas true at a 

node are part of the second component (from the closure of the formula), the 

algorithm constructs all the maximal SCCs and checks whether there is a node 

that is labelled with the original formula,

This algorithm is local since, although it requires the product graph to be 

constructed and kept in memory, when a node is found in an SCC that is la

belled with the formula being checked the algorithm reports that the formula is 

satisfiable without labelling anymore nodes in the graph. Since every node in 

the product graph needs to be visited during the construction of the SCCs the 

complexity of the algorithm is 0(1^1 x 25M). Since the algorithm constructs es

sentially a maximal tableau for the formula to be checked it is not considered to 

be a practical algorithm, and, to the best of our knowledge, no implementation
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exists.

3.3 .3  F ish er

[Fis92]

This was one of the first LTL algorithms to construct the product graph 

on-the-fly during the model checking procedure. It uses the common approach 

LTL model checking of negating the formula and looking for the existence 

of an accepting path (if such a path exists then the original formula does not 

hold). Since only the parts of the graph required to find an accepting path is 

constructed, it follows that memory and time will be saved in the case where 

the path are found before the complete graph is constructed. In other words, 

the algorithm is especially efficient when s ^  Aip. An interesting point to note 

about this algorithm is that instead of constructing SCCs, it keeps track of all 

subformulas of ip that are unsatisfiable at a node in the graph, therefore making 

sure that formulas will not be checked more than once from a specific node in 

the graph.

3 .3 .4  B h a t, C leavelan d  and  G rum berg

[BCG95]

Here the following approach is taken for doing LTL model checking: rather 

than looking for the existence of a path that satisfies the negation of the for

mula, all the paths must satisfy the formula. A form of closure construction, 

called subgoals, is used in a similar fashion to [LP85]. Furthermore, an efficient 

algorithm for the on-the-fly construction of SCCs (due to Tarjan [Tar72]) is used 

to find infinite paths that cannot be accepted. An infinite path is accepted only 

if there exists a state on the path that is labelled with a V  operator. The 

SCCs are built in memory, but are discarded when all the paths through them
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are accepting (i.e. have a state labelled with a V  operator). For efficiency, all 

states visited are recorded as well as all the subformulas that do not hold in 

those states.

3.4 Global and Automata

3 .4 .1  B ern h o ltz , V ardi and  W olper

[BVW94]

The first approach to doing automata-theoretic CTL model checking was 

to translate the CTL formulas to nondeterministic Buchi automata [VW86b]. 

This translation however caused an exponential size increase, and, since the 

complexity of CTL model checking is known to be linear in both the size of the 

Kripke structure and the formula, this approach found no favour in the CTL 

model checking community. In [BVW94] it was shown that CTL formulas can 

be translated linearly to alternating tree automata and also that both local 

and global CTL model checking are possible with these automata. The use 

of alternating tree automata for efficient CTL* model checking is discussed in 

detail in the following chapters.

3.5 Local and Automata

3.5 .1  V ardi and W olper

[VW86b, VW94]

For linear time temporal logics, notably LTL, a close relationship with non- 

deterministic automata has been established [VW86b, VW94]. Essentially, with 

each linear time formula, an automaton over infinite words is associated that 

accepts exactly all the computations that satisfy the formula. Therefore if we
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consider the Kripke structure to be an automaton as well, call it A k , with the 

automaton describing the formula, A^,, then model checking can be described 

as a language containment problem:

C{Ak ) C £ ( ^ )

This can be rewritten as a nonemptiness problem of intersecting automata:

£ { A k ) fl  C(A^)  =  0

LTL formulas can express properties on infinite behaviours, therefore au

tom ata that accept infinite sequences (words) are required. Nondeterministic 

Biichi automata (NBA) [Biic62] can accept infinite sequences and are often used 

for automata-theoretic LTL model checking [VW86b, Tho90, VW94, Var96].

A Biichi automaton A is a 5-tuple (E, S, p, so5 F ), where E is a finite alpha

bet, S' is a finite set of states, so 6 S  is the initial state2, p : S  x E —> 2s  is a 

transition function and F  C S  is the set of accepting states. Intuitively, p (s , a) 

is the set of states A  can move into when it reads symbol a when in state s. 

Since it can move to a set of states, the Biichi automaton is nondeterministic. If 

an infinite word, w =  ao, a\ , . . .  over E is given as input to A  then a run  of A  is 

the sequence s o , s i , . . .  where G p(si, a*), for alH >  0 (we also refer to a run 

as a path of states). If we define i n f  (7r) as the set of states that occur infinitely 

often on the infinite path 7r, then ir is an accepting path iff i n f  ( t v )  fl F  ^  0.

A Kripke structure K  — (Props, S, R, so, L) can be viewed as a Biichi au

tomaton A k  — (S, S, p, so, S), where S =  2Props and s' G p(s,a) iff (s, s') G R  

and a = L(s). The automaton A k  has as its accepting set all the states in the 

automaton and therefore any run of the automaton is accepting. Thus, C(Ak ) 

is the set of computations (possible behaviours) of K.

In [VW94, Var96] it is proven that for an LTL formula ip a Biichi automaton 

A^  can be constructed such that C(A^) is the set of computations that satisfies

2In the general case there is a set of initial states, but for model checking we only require 
a single initial state.
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formula ip with the number of states of C(A^) in 0(2°(M )). Furthermore, 

in [Var96] it is shown that for Biichi automata the following holds: C{A^) =  

C(A^).

In general the following does not hold for Biichi automata: C{A\ x A 2) = 

C{A\)C\C{A2 )i since this implies that the two automata must go infinitely often 

and simultaneously through accepting states. Here, however, since all the states 

of A k  are accepting we have:

L{Ak  x A-af,) =  C{Ak ) n  C ( A ^ )

Automata based LTL model checking can therefore be described by the 

following three steps:

1. Negate formula ip and create the NBA A ^ .

2. Construct the product automaton A k ^  — K  x A -^ .

3. If C{Ak^tp) A  0 report invalid else report valid.

As an example, consider checking whether AFG-^p is true in the initial state 

of K  given in Figure 3.1, i.e. is the language accepted by the Biichi automaton 

for K  included in the language of the Biichi automaton for FG-'p. First we 

negate the formula FG~^p and generate the Biichi automata for GFp  given 

in Figure 3.2. The product automata, Figure 3.3, is nonempty since it has a 

run that infinitely cycles through an accepting state (h, 2), therefore we have 

K, x AFG-ip.

A Biichi automaton accepts some word iff there exists an accepting state 

reachable from the initial state and from itself [TB73, VW94], It is easy to see 

that a linear time algorithm exists to find such an accepting state, thus matching 

the result in [EL87]. Decompose the state graph of the automaton into SCCs, 

which can be done in time linear in the size of the automaton [Tar72j; the
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T

Figure 3.1: Kripke structure K  = ({{p}, {-^p}}, {x , Vi z , k, h}, R, x, L)

Figure 3.2: Biichi automaton for GFp A GFp = ({{p}, {-np}}, {l, 2}, p, 1, {2})

T

h ,2

Figure 3.3: Biichi automaton for product A k  x  A qfp>
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automaton is nonempty iff an accepting state exists in any of the SCCs. Since 

checking whether a Biichi automaton accepts some word can be done in time 

linear in the size of the automaton and an LTL formula ij) can be translated to 

a Biichi automaton with 0 ( 2°(W)) states this gives model checking complexity 

0(|S1 x where \S\ is the number of states in the Kripke structure to be

checked. The complexity matches the results of [LP85, SC85] that was obtained 

without the use of automata theory.

3 .5 .2  B arrin ger, F ish er and  G ough

[BFG89]

This algorithm was one of the first automata-theoretic LTL model checking 

algorithms to be implemented. This algorithm takes a similar approach than the 

one described above except that rather than constructing the Biichi automaton 

for a formula, a tableau containing just enough information to characterise the 

possible models for a formula is constructed[Gou84]. In a similar fashion to 

the algorithm above a product graph is constructed from the tableau for the 

formula and the Kripke structure and checked for accepting paths by examining 

the terminal SCCs in the graph. In the implementation of the model checker 

an efficient algorithm for constructing the terminal SCCs is used based on an 

algorithm by Tarjan [Tar72].

3.5 .3  C o u rco u b etis  e t  al.

[CVWY92]

They show that during the nonemptiness check of a Biichi automaton the 

computation of SCCs can be avoided. Note that constructing SCCs is not 

very memory efficient since the states in the SCCs must be stored during the 

procedure. The idea is to use a nested depth-first search to find accepting states
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that are reachable from themselves.

1 dfs(state s)
2 Add (s,0) to VisitedStates;
3 FOR each successor t of s DO
4 IF (t,0) not in VisitedStates THEN dfs(t) END
5 END
6 IF s is an accepting state THEN seed = s; 2dfs(s) END
7 END;
8
9 2dfs(state s)
10 Add (s,l) to VisitedStates;
11 FOR each successor t of s DO
12 IF (t,l) not in VisitedStates THEN 2dfs(t) END
13 ELSIF t==seed THEN report nonempty END
14 END
15 END

Figure 3.4: Nested DFS

Such an algorithm is given in Figure 3.4. VisitedStates is a data-structure, 

usually a hash table, that keeps track of all states already seen during the 

search. The algorithm works as follows: when the first search backtracks to an 

accepting state a second search is started to look for a cycle through this state. 

In [CVWY92] it was stated that the memory requirements of the nested depth- 

first search would be double that of a single depth-first search, but in [GH93] 

it is shown that only two bits need to be added to each state to separate the 

states stored in VisitedStates. Unfortunately, the time might double when all 

the states of the automaton are reachable in both searches and there are no 

cycles through accepting states.

Of all model checkers, SPIN [Hol91] is probably the most widely used: in 

[HP96] it is mentioned that there are more than 2000 installations of SPIN3, 

with an even spread among commercial and academic usage. Correctness prop

erties in SPIN are specified by the so-called never claim, which is essentially 

a Biichi automaton expressing unacceptable behaviour (hence the name never

3 More recently it was estimated nearer 4000 [Hol97a]
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claim). Checking nonemptiness of the automaton comprising the product of 

the never claim with the model of the system is done with the nested depth- 

first algorithm shown in Figure 3.4 [Hol91, HPY96]. The product automaton 

is also built on-the-fly during the depth-first search for memory efficiency. An 

interface for doing LTL model checking exists by translating a LTL formula to 

a never claim (Biichi automaton).

The nested depth-first search to determine whether an accepting state can 

be reached from itself, is the most memory efficient of the LTL model checking 

algorithms described here. Building SCCs (as in [BCG95]) can be very memory 

inefficient when model checking reactive systems. The reason is that reactive 

systems do not terminate and hence it is not uncommon for all reachable states 

of the system to be reachable from each other, i.e. all the states to be in one 

SCC. An example, albeit a trivial one, of such a system is the mutual exclusion 

system shown in Figure 2.1.

Lastly it is worth noting that there have been some attem pts at doing 

automata-theoretic LTL model checking with OBDDs [BCM+90, Kur94]. The 

COSPAN model checker [HHK96], similar to SPIN, checks whether a property 

specified as a Biichi automaton is satisfied in a Kripke structure. COSPAN can 

either operate in an explicit state mode or in an OBDD mode. In the OBDD 

mode interesting heuristics are used to determine when cycles in the product 

automaton exist with no accepting states (so-called bad cycles) [HKSV97]. Un

fortunately it is observed that these heuristics only work in limited cases.
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3.6 Discussion

3.6 .1  L ocal over G lobal

An advantage of local model checking over global model checking is that the 

transition relation (state space) of the Kripke structure can be generated on- 

the-fty during the model checking process. The description of a reactive system 

to be checked can therefore be given as transition rules describing how a state 

must be transformed to enable the transition to a successor state. On-the-fly 

model checking is more space efficient than global model checking since in some 

cases the complete state space of a model need not be generated to determine 

whether a formula is true or false in the initial state.

We argue that in practice, space efficiency is more important than time 

efficiency: one is quite prepared to wait ten minutes for a model checker to finish 

executing, but one learns nothing if after ten seconds the program aborts due 

to a lack of memory. This is an argument for using on-the-fiy (local) as opposed 

to global model checking algorithms. Although OBDD based algorithms can 

be more space and time efficient than local model checkers, their behaviours 

are highly dependent on the problem being tackled and therefore in many cases 

only experts can achieve good results.

3 .6 .2  A u to m a ta  over S tru ctu ra l

Although the time complexity of the automata based algorithms and those 

based on the structure of the formula are the same for LTL model checking, 

namely linear in the size of the Kripke structure and exponential in the size 

of the formula, the actual time taken in the structural approach is dependent 

on the exact formula. Structural algorithms may take different amounts of 

time (and space) to check equivalent formulas on the same Kripke structure. 

For example, in [BC96] it is observed that the model checker of section 3.3.4
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finds it easier to check the formula A(FG(p  A Fq)) than the equivalent formula 

A(FGp  A GFq). The automata approach does not tend to suffer this problem: 

the two formulas above give the same Biichi automaton when using the LTL 

to Biichi translation of [GPVW95] (see Figure 3.5, the T  on the one transition 

stands for true and indicates any input that is read can cause the transition). 

Since formulas used for model checking are “small” the cost of the translation 

from LTL to NBA is negligible.

Figure 3.5: Biichi Automaton for FG(p A Fq) and FGp A GFq

3.7 Concluding Remarks

An interesting observation is that the LTL model checking algorithms described 

in this chapter can easily check formulas of the form Eip where ip contains no 

state subformulas. In the approaches of [LP85, BFG89, Fis92, HPY96], if a 

formula of the form Eip is to be checked the formula is not negated and if 

a path satisfying ip is found the formula holds in the Kripke structure. In 

the algorithm of [BCG95] the formula Eip is negated and if the model checker

P

P

p>q
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finds that all paths satisfy -iip, the original formula does not hold, otherwise it 

holds. Although LTL formulas are traditionally defined over all paths, in the 

rest of this thesis we will consider both universally quantified formulas Aip and 

existentially quantified formulas Eip to be LTL formulas (where the only state 

subformulas in ip are propositions). Clearly this will not alter the complexity 

of the model checking algorithms, but will add expressive power. Both SPIN 

[HPY96] and the model checker of Bhat et al [BCG95] allow formulas to be 

given in both the Eip and Aip forms.

It is surprising to find that although there are numerous model checkers 

for the sublogics CTL and LTL, CTL* model checking has not received the 

same amount of attention. A reason for this might be that theoretically the 

CTL* model checking problem is the same as LTL model checking. LTL model 

checkers check formulas of the form Aip and Eip, where ip contains no state 

subformulas. But similarly, they can also be extended to handle the cases 

where ip does contain state subformulas, by calling themselves recursively to 

determine whether the subformula is true or false. For example, given the 

formula ip = A (F G p A E F q ), when the truth-value of EFq  is required in a state 

Si, the model checker is called recursively to first solve the problem Si \= EFq  

before continuing.

The LTL model checker described in section 3.3.4 is extended in the above 

fashion to do local CTL* model checking [BCG95]. As was mentioned in the 

previous section, this model checker is not as memory efficient as the SPIN 

system and furthermore its behaviour is dependent on the exact form of the 

formula to be checked.

In [Dam92] it is shown that CTL* formulas can be encoded in the pow

erful branching time logic the /i-calculus. Model checking algorithms for the 

^-calculus are well studied [SW89, SW91, BS90, Cle90, CKS92], but unfortu

nately no polynomial time algorithm has yet been discovered. Using model
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checking algorithms that can handle the full //-calculus therefore seem unlikely 

to yield efficient CTL* algorithms. Interestingly, the algorithm of section 3.3.4 

has been extended to model check two powerful fragments of the //-calculus 

[BC96]. One of these fragments has more expressive power than CTL*.

In this thesis we are interested in finding efficient model checking algorithms 

for CTL*. Specifically, we are interested in the use of automata-theoretic tech

niques for finding model checking algorithms that are efficient in both time and 

space usage. In the next three chapters we show how alternating tree automata 

and the theory of 2-player games can be combined to yield an efficient model 

checking algorithm for CTL*.
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Chapter 4

A utom ata for Tem poral Logic

Automata theory and temporal logic are closely related, since we can associate 

with each temporal formula a finite automaton on infinite objects that accepts 

exactly all the computations that satisfy the formula. For linear time formulas 

the automata take as input infinite words [WVS83, SVW87, VW94] and for 

branching time the input is infinite trees [ES83, SE84, Eme85, EJ88, VW86aj. 

The temporal logic satisfiability and model checking problems can thus be re

duced to the nonemptiness checking of automata.

The automata-theoretic approach to temporal reasoning has many advan

tages. On the one hand, automata-theoretic techniques provide the only known 

efficient satisfiability testing procedures for CTL* [ES83] and the //-calculus 

[EJ88]. On the other hand, new types of automata have been defined to facili

ta te reasoning about different temporal logics [MP87, EJS93, BG93, BVW94]. 

The quest for optimal decision procedures for temporal logics has also led to 

improvements in automata theory. For example in [Saf88] the determinization 

of automata, i.e. translation of a nondeterministic automaton to a deterministic 

automaton, on infinite words is reduced to a single exponent (in the size of the 

automaton) and in [SVW87] a similar result is achieved for the complementation 

of automata on infinite words.

60
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In this chapter we first consider nondeterministic automata and then, the 

more general, alternating automata as the automata-theoretical counterpart for 

linear and branching time temporal logic. In the linear time case we look at word 

automata (i.e. nondeterministic and alternating word automata) and in the 

branching time case it is tree automata (i.e. nondeterministic and alternating 

tree automata). From work by Bernholtz [Ber95] it is known that a special type 

of alternating tree automata, called hesitant alternating tree automata (HAA), 

is required for efficient CTL* model checking. In the second part of the chapter 

efficient translations from formulas in a number of sublogics of CTL* to HAA 

are given.

4.1 Nondeterm inistic Automata

4 .1 .1  W ord  A u to m a ta  - L inear T im e

Nondeterministic automata over infinite words are the automata-theoretic coun

terpart of linear time temporal logic [WVS83, SVW87, Tho90, Kur94, VW94, 

GPVW95]. Specifically, nondeterministic Biichi automata (NBA) have been 

popular for reasoning about LTL decision problems. In section 3.5.1 the use of 

NBA for doing LTL model checking was described. Efficient LTL model check

ing with automata, however, requires efficient translations from the temporal 

formula to the Biichi automata. In the worst case this translation is exponential 

in the size of the formula [WVS83, VW94, Var96, GPVW95].

The first translation from an LTL formula to a Biichi automaton was pre

sented by Wolper, Vardi and Sistla [WVS83, VW94]. It is based on constructing 

the intersection of two automata: the local automaton (that takes care of the 

state to state consistency of a run) and the eventuality automaton (that checks 

that accepting states are visited infinitely often on a run). This construction
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was developed to show the theoretical connection between LTL and Biichi au

tom ata and its correctness. However, if it is applied blindly it leads to an NBA 

of exponential size. It is also a global construction, in the sense that only after 

the whole automaton is constructed can it be reduced by removing unreachable 

nodes.

In [Gou84] and [KMMP93], where the goal was satisfiability checking (does 

a model exist for a formula?) rather than model checking (is a specific model 

a model for the formula?), tableau constructions for linear temporal logic are 

given. These algorithms improve on the global algorithm given above, since 

they create the tableau incrementally and therefore does not realise the expo

nential increase in size immediately (although they will in the worst-case). The 

resulting tableau corresponds to a Buchi automaton and can be used for model 

checking [BFG89].

The algorithm of [GPVW95] allows the Biichi automaton to be built on- 

the-fly during the model checking process. This is different from the previ

ous algorithm, where the automaton must be built before model checking can 

commence. The LTL formula is translated to a generalised Biichi automaton1 

[CVWY92] using a simple depth-first algorithm. Unlike some of the earlier 

algorithms, notably the algorithms based on the intersection of the local and 

eventuality automata, this algorithm is easy to implement and is used for the 

LTL to NBA translation within the SPIN model checker (section 3.5.1). Note 

that it is straightforward to translate a generalised Biichi automaton to a clas

sical Biichi automaton as defined in section 3.5.1.

1The accepting condition is a set of sets of states and for a path to be accepting at least 
one state from each set must be visited infinitely often.
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N onem ptiness Checking

Checking the nonemptiness of an NBA has been discussed in detail in sec

tion 3.5.1. An interesting observation about checking nonemptiness of an NBA 

is that the problem can be reduced to a 1-letter nonemptiness problem, i.e. the 

nonemptiness check for an NBA with a single letter alphabet. When checking 

whether there is an accepting path in the automaton, one only needs to find 

an accepting state that is reachable from the initial state and from itself; the 

input letters that are read when the automaton moves from one state to the 

next are not important and hence can be considered to be the same letter.

4 .1 .2  T ree A u to m a ta  - B ran ch in g  T im e

The automata-theoretic counterpart for branching time temporal logic is au

tom ata over infinite trees [Rab69, MSS86, MSS88, VW86a]. The study of such 

tree automata has been instrumental in finding optimal decision procedures for 

various branching time temporal logics [ES83, SE84, Eme85, EJ88, VW86a]. 

For branching time, unlike for linear time, satisfiability and model checking 

complexity do not coincide (see Table 4.1); model checking is typically much 

easier than checking satisfiability. Nondeterministic tree automata cannot com

pete with this gap, essentially since the translation from formulas to automata 

can incur an exponential blow-up in size. Therefore, when using nondetermin

istic tree automata as a basis for model checking the resulting algorithm’s time 

complexity will be exponential in the size of the temporal formula.

Satisfiability Model Checking
LTL PSPACE-complete PSPACE-complete
CTL EXP TIME-complete Linear Time
CTL* 2EXPTIME-complete PSPACE-complete

Table 4.1: Satisfiability and Model Checking Complexity of LTL, CTL and 
CTL*
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Since nondeterministic automata have traditionally been used for automata- 

theoretic model checking and since for certain branching time temporal logics 

model checking is linear (e.g. CTL), automata-theoretic techniques have been 

considered inapplicable to branching time model checking. In [BVW94, Ber95] 

it is shown that the use of alternating automata over infinite trees is the 

automata-theoretic counterpart of branching time temporal logics that allows 

efficient model checking.

4.2 Alternating Automata

Alternating automata generalise nondeterministic automata, since they can ex

press both existential and universal choice, whereas nondeterministic automata 

can only express existential choice. In fact, the name refers to the automaton’s 

ability to alternate between existential and universal choice. Alternation is stud

ied in the context of automata over finite objects in [BL80, CKS81, Lei81, Var96] 

and infinite objects in [MH84, MSS86, MSS88].

In order to define the alternating automata of interest here, the following 

definition is required: for a given set X , let B +(X)  be the set of positive 

Boolean formulas over X  (i.e. boolean formulas built from elements in X  using 

A and V), where the formulas true and false  are also allowed. Y  C X  satisfies 

(4 E B +(X)  if j3 is satisfied when assigning true to the members of Y  and false 

t o X - Y .  For example, the set {so, si} satisfies the formula (so V S2) A (si V S 3 ),  

but the set {so,S2 } does not.

4 .2 .1  W ord A u to m a ta  - L inear T im e

First we show the difference between nondeterministic and alternating Biichi 

word automata with the aid of the function B +(X)  (defined above).
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For a nondeterministic Biichi word automaton A = (E, S',5, sq , F)  the tran

sition function S maps a state s and an input symbol a £ S  to a set of states indi

cating the possible nondeterministic choice for the automaton’s next state. The 

function 5 can be represented by using B +(S); for example, £(s, a) =  {so, si, S2 } 

can be written as <5(s, a) =  so Vsi V s2. When using alternating automata, how

ever, 5 can be an arbitrary formula from B +(S); for example

6(s, a) =  (s0 A sx) V (s2 A s3)

meaning that the automaton accepts the word aw (where a is a symbol and w 

is a word) when it accepts a in state s and accepts w from both states so and 

s i  or from both s 2  and S3 . The transition combines therefore both existential 

choice (disjunction) and universal choice (conjunction).

Formally, an alternating Biichi word automaton is a tuple A — (S, S, 5, so, F1), 

where S  is a finite alphabet, S' is a finite set of states, so £ S  is the initial state, 

F  is the set of accepting states and <5 : S  x E —> B +(S) is a partial transition 

function. Since an alternating Biichi automaton can express universal choice, 

a run of the automaton is a tree. Each node in the tree is mapped to a state 

in S. The branches in the tree can be either finite or infinite: they are finite 

when the boolean expression in the transition function is either true or false. 

A run is accepting if all its branches are either finite and terminated by a true  

or infinite and nodes labelled by a state in F  are seen infinitely often on the 

branch.

Alternating Biichi word automata generalise nondeterministic Biichi word 

automata: nondeterministic automata correspond to alternating autom ata where 

the class of transition functions used are restricted to those that relate states 

Si with disjunctions of the form V s*- [MH84] it is shown that they have 

the same expressive power, but alternating automata can be more succinct, 

exponentially more succinct in fact. When considering the translation of LTL
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formulas to Biichi automata the succinctness of alternating automata over non

deterministic automata is very apparent: LTL formulas can be translated lin

early to alternating Biichi automata (see next paragraph and [MSS88]), but 

can cause an exponential increase when translated to nondeterministic Biichi 

automata.

Given an LTL formula A<p, an alternating Biichi word automaton A^ — 

(2 Pr°P\S,$  , so, F} can be constructed such that the language it accepts is ex

actly the set of infinite words satisfying (p. The set S  is all the subformulas of ip 

and the acceptance condition F  includes all subformulas of the form -01 V  ip2 - 

The transition relation, 8, is defined in Figure 4.1.

• 5(q, a) = true if q G a

• 5(q> a) = false if q ^  a

• 5(-iq, a) = true if q g  a

• 6(-<q}a) — false if q E a

• 5(t/)i A -0 2 , 0 ) =  5(^i, a) f\5{ip2,o)

• V 02,(0 =  <y(^i,a) V 5(^2, a)

• 8(Xif), a) — 'ip

• 5(tpi U -02, a) = £(02, a) V (<S(0i, a) A ip iU  ip2)

• 5{ipi V  ip2,a) =  8(ih,a)  A (<5(0i,a) V 0 i V  0 2)

Figure 4.1: Translation of LTL to Alternating Biichi Word Automata

E xam ple: Consider the LTL formula AGFp. The subformulas of the linear 

fragment GFp are: false V (true U p), true U p and p. Let us first look at the 

transition relation for q\ — true U p :

(̂<7i r a) — ${Pia) V (5(true, a) Aqi)

which simplifies to:

S(qh a) =  8(p,a) V gi
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Now let us consider go =  false V g :̂

6 (go, a) =  6{qi,a) A (6 (false, a) V g0)

which simplifies to:

% o ,a )  =  (S(p,a) V gi) A g0

State go is of the form ipi V fa  and ls therefore in the acceptance set F.  In 

Figure 4.2 the alternating Biichi word automaton for GFp is given. Note that 

the transition function for the proposition p  is combined with those for states 

go and gi and is therefore not explicitly shown.

Q <%> W )
Qo go A gi <10
<21 91 true

Figure 4.2: A q f v =  ({{p}, {“'P}}, {^o, 4i}, 5, g0) {go}) 

N onem ptiness  C hecking

Unlike the nonemptiness problem for nondeterministic Biichi word automata, 

the nonemptiness problem for alternating Biichi word automata does not reduce 

to a 1-letter nonemptiness problem. The reason for this is that when an A- 

choice occurs in a run, both branches must read the same input word. Take 

for example the alternating Biichi word automaton for GFp (Figure 4.2), when 

reading the two input words -g>, -g?,. . .  and -g?,p, ~g?, ~̂ p, • • • that coincide on 

the initial letter, but then diverge with one reading -g? infinitely and the other 

first reading a p  then ->p infinitely. In the initial state go, if after reading the 

initial -g? the left-hand side of the A-choice (i.e. the cycle through go) continues 

to read the first input, then that branch is accepting (since go is an accepting 

state) and if the right-hand side reads the second input then it is also accepting 

since reading a p  in state gi results in the t ru e  transition being taken. Clearly 

though, in neither of the two input words do we see a p infinitely often, which is
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what GFp  is stating. However if we let the two branches from the A-choice read 

the same input word we get the desired result, i.e. the alternating automaton 

does not accept either word.

Since an alternating Biichi word automata can be translated to a non- 

deterministic Biichi word automata of exponential size [MH84] and checking 

nonemptiness of nondeterministic Biichi automata can be done in time linear 

in the size of the automaton [EL87], the nonemptiness problem for alternat

ing Biichi word automata is decidable in exponential time. Interestingly, the 

I-letter nonemptiness problem for alternating Biichi word automata is not lin

early solvable either; in [VW86b] it is shown to be decidable in quadratic time. 

Furthermore, since an LTL formula can be translated to an alternating Biichi 

automaton of size linear in the length of the formula (see Figure 4.1) it again 

follows that LTL model checking can be done in time exponential in the size of 

the formula.

4 .2 .2  T ree A u to m a ta  - B ran ch in g  T im e

In order to define automata over infinite trees we need the following basic 

definitions. A tree is a connected directed graph, with one root node, e, and 

every other node has a unique parent. A tree t  over N is a subset of N*, such 

that if x  • i G r ,  where x  G N* and i G N, then also ic G r, and for all 0 < i1 < i, 

x ■ i' G r . For every x  G r  the nodes x  • i where i G N are called the successors 

of x. The degree of a node x , d(x), in a tree r  is the number of successors of 

x  in r. A leaf is a node with no successors. A path t v  of a tree r  is a sequence 

of nodes starting with e and for every x  G 7r, either x  is a leaf or there exists 

a unique i £ N such that x  • i G t v . Let m/(7r) be the set of nodes that occur 

infinitely often on the infinite path t v . Let D  CN , then a tree r  is a D-tree if 

r  is a tree over N and d(x) G D  for all x  G r. A tree is called leafless if every 

node has at least one child. A E-labelled tree, for a finite alphabet £ , is a pair
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(t,V ), where r  is a tree and V is a mapping V : t  £  that assigns to every 

node of r  a label in S. For model checking the type of E-labelled tree we are 

interested in has E — 2Props for a set of atomic propositions Props.

Automata over infinite trees (tree automata) run over leafless E-labelled 

trees. An alternating tree automaton is a tuple (E ,!? ,# , 5, 8q,F). Here E is a 

finite alphabet, D C N is a finite set of branching-degrees, S' is a finite set of 

states, sq ^ S  1S the initial state, F  is the acceptance condition (the type of 

condition depends on the type of alternating automata; two types are discussed 

below) and i?+ (N x S) is a partial transition function, where

S(s, a, k ) E B +({0 , . . . ,  k — 1} x S) for each s £ S, a E E and k E D  such that 

S(s,a,k)  is defined.

A run r of an alternating automaton A on a leafless E-labelled tree (r, V)  

is a tree where the root is labelled by so and every other node is labelled by an 

element of N* x S. Bach node of r corresponds to a node of r . A node in r, 

labelled by (rr, s), describes a copy of the automaton that reads the node x  of r  

in the state s. Note that many nodes of r  can correspond to the same node of t .  

The labels of a node and its successors have to satisfy the transition function. 

Formally, a run r is a Er-labelled tree (rr , %) where Er =  N* x S  and (rr ,Tr) 

satisfies the following:

1. e E rr and %{e) — (e,so)

2. Let y E rr with Tr (y) = (®,s) and J(s,V(a:),d(a;)) =  9. Then there is

a possibly empty set Q = {(c0, s0), (ci, s i ) , . . . ,  (c„, sn)} C { 0 ,. . . ,  d(x) -  

1} x S', such that the following hold:

• Q satisfies 6, and

• V« : 0 <  i <  n, we have y • i E Tr and Tr(y • i) = (x • Ci, Si)

A run is accepting if all its infinite paths satisfy the acceptance condition

F. For example, the Biichi acceptance condition F  C S  will be satisfied on an
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infinite path it iff i n f  (ir) fl F  7  ̂ 0. Note that we can get finite branches in the 

tree representing the run when either true or false is read in the transition 

function. However in an accepting run, only true can be found as leaves, since 

a path containing false is trivially not accepting.

Example: Let us consider the following transition function: J(so,&j2) =  

((0,si) V (1 , 5 2 )) A ((0 , 5 3 ) V (M i)) . When the automaton is in state so> reads 

input a and the branching degree of the input tree is 2 when a is read (i.e. there 

are 2 successor states from this state in the input tree) then the automaton will 

make two copies of itself (due to the A in <J) which could then proceed in different 

ways. One possibility is that one copy of the automaton proceeds to state si 

and the next input this copy reads is in direction 0 of the input tree (which 

could be considered to be the first successor of the state in the tree where a 

was read), the other copy of the automaton could also go to state s\ but read 

its input in direction 1 of the input tree (say in the direction of the second 

successor of the state in which a was read). In fact there are four possibilities 

for the automaton to proceed, summarised below:

•  one copy proceeds in direction 0 in state si and one copy proceeds in direction 0 in S3.

•  one copy proceeds in direction 0 in state ,si and one copy proceeds in direction 1 in .sj .

•  one copy proceeds in direction 1 in state S2 and one copy proceeds in direction 0 in S3.

• one copy proceeds in direction 1 in state S2 and one copy proceeds in direction 1 in s \ .

W eak A lternating A utom ata

Weak alternating automata (WAA), introduced by Muller et al. [MSS86], was 

one of the first types of alternating automata to be used for reasoning about 

temporal logic. In [MSS86] they show that WAA define the set of weakly defin

able languages 2 defined by Rabin in [Rab70], hence the name weak alternating

2 A language is weakly definable when it is definable by a formula in the weak monadic 
logic of the tree where one allows quantification only over finite sets.
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automata. In [MSS88] WAA are used to explain the complexity of decision pro

cedures for certain temporal logics. More recently, WAA were used to define 

linear time algorithms for model checking CTL [Ber95]. In [BVW94], Bern- 

holtz et al. defined bounded alternation WAA, that also allow space efficient 

CTL model checking. In fact, it was shown that CTL model checking is in 

NLOGSPACE in the size of the Kripke structure.

A weak alternating automaton is defined as follows. Firstly, it uses a Biichi 

acceptance condition, F  C S. The set of states of a WAA can be partitioned 

into disjoint sets Si , such that each Si is either an accepting set, i.e. Si C F,  or 

is a rejecting set% i.e. Si fl F  =  0. Furthermore, a partial order < exists on the 

collection of Si sets such that for every s € Si and s{ E Sj for which s1 occurs in 

8{s,a,k) for some a 6 £  and k 6 D ) we have Sj < S j. Thus, transitions from 

an Si either lead to states in the same Si or a lower one. An infinite path in the 

run of a WAA will therefore get trapped within some S^  if this Si is accepting 

then the path satisfies the acceptance condition.

Unfortunately WAA cannot be used for model checking CTL*, since CTL* 

can define languages that are not weakly definable. As an example we show 

that the alternating Biichi automaton translated from the CTL* formula EGFp 

(given in Figure 4.3) is not a WAA. If we consider the definition of the partial 

order between the Si sets of states it is clear that both states qo and q\ must 

be in the same Si set: q\ is referred to in 8(qo,a,k) and qo is referred to in 

8(qi, a, k) hence q\ and qo cannot be in different S{ sets because then there will 

not be a partial order between the two sets. Furthermore, only one of the states 

in the single Si set is in the accepting set F , namely state q\. In a WAA all Si 

sets must either be accepting or rejecting, and this is clearly impossible here, 

since the Si set is neither accepting nor rejecting with regards to the Biichi 

acceptance condition F  = {qi}-
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7 <5(7, {-«£},&) W ,fc)
70 V S M o )
7i V*=n(c,7o) V S ( m i )

Figure 4.3: A EGFp =  ({{p},{^p}},-D,{7o,7iL^7o>{7i})

H esitant A lternating A utom ata

A stronger acceptance condition is therefore required for automata correspond

ing to CTL* formulas. In [Ber95] hesitant alternating tree automata (HAA) 

are defined that have a more restricted transition structure than WAA, but a 

more powerful acceptance condition. As with WAA, there exists a partial order 

between disjoint sets Si of S. Furthermore, each set Si is classified either as 

transient, existential or universal, such that for each S{, and for all s € Si, a E H 

and k £ D  the following holds:

• if Si is transient, then <5(s, a, k) contains no elements from S{. Examples 

(assume Si = {so}):

-  <5(s0, a, 2) =  (0, si)  A (1, s2)

-  5(s0, a, 2) =  ((0, si) V (1, s2)) A (0, 5 3 )

• if Si is existential, then <5(s, a, k) only contains disjunctively related ele

ments of Si. Examples (assume Si =  {so}):

-  <5(s0,a,2) =  (0,s0) V (1,sQ)

<*(so» a, 2) =  ((0, s0) V (1, s0)) A (0, Si)

but here Si is not an existential set

-  15(50,0,2) =  ((0, s0) A (1, s0)) V (0, sx)

• if Si is universal, then <5(s, a, k) only contains conjunctively related ele

ments of S^  Examples (assume Si = {so}):
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-  <5(s0,a ,2 )  =  (0, s 0) A ( l , s 0)

-  £ (s0, a, 2) =  ((0, s 0) A (1, s 0)) V (0, s x)

but here S{ is not a universal set

-  <5(s0, a, 2) =  ((0, s 0) V (1, s 0)) A (0, s i )

The acceptance condition is a pair of sets of states, (G, B). Prom the above 

restricted structure of HAA it follows that an infinite path, <•/>, will either get 

trapped in an existential or universal set, Si. The path then satisfies (G , B ) iff 

either S{ is existential and m/(</>) D G ^  0 or is universal and inf(4>) D B  = 0.

Here we also define a subclass of HAA, called 1-HA A, for which every Si set 

contains only one state in the partial order. It will be shown that 1-HAA is the 

automata-theoretic counterpart of CTL, whereas HAA in general correspond 

to CTL* formulas. As an example consider again the WAA for EGFp (given 

in Figure 4.3) that can be considered an HAA if we change the acceptance 

condition to ({#i}, {}); since the single Si set contains two states qo and qi this 

is not a 1-HAA. Note also that the Si set is an existential set.

As shown in [Ber95], complementing HAA is straightforward: complement

ing an HAA A  =  (E ,D , Q, 5, qo, (G,B))  is A  =  (E ,D ,Q ,^,go, (B ,G )), where <5 

is defined as switching all the true and false values and the A and V symbols. 

For example, if 5(q, a,k) = p  V (true A g), then 6 = p A (fa lse  V g).

4.3 Model Checking with HAA

Let us first consider the general approach to automata-theoretic branching time 

model checking. Recall that for linear time temporal logic each Kripke structure 

may correspond to infinitely many computations. Model checking is therefore 

reduced to checking inclusion between the set of computations allowed by the
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Kripke structure and the language of an automata describing the formula (sec

tion 3.5.1). For branching temporal logic, each Kripke structure corresponds to 

a single nondeterministic computation. Therefore, model checking is reduced to 

checking the membership of this computation in the language of the automaton 

describing the formula [Wol89].

A Kripke structure K  = (Props, S , R , s°, L) can be viewed as a tree ( t k , Vk)  

that corresponds to the unwinding of K from s°. Let s u c c r ( s ) =  (so,. . . ,  S(d(s ) _ i ) )

be an ordered list of s’s R-successors. We define tk and Vk  as follows:

1. e E tk  and Vj<-(e) =  s°.

2. For y £ tk with succr(Vk (v)) = (so,. . . ,  sn) and for 0 < i < n, we have 

y - i  e  t k  and VK (y ■ i) =  s{.

Let <p be a branching time temporal formula and let D 6 N be a set of 

degrees. Suppose that A d )<p is an alternating automaton that accepts exactly 

all the D-trees that satisfy <p. Consider a product of K  and A $ ^ ,  i.e. an 

automaton that accepts the language C(Ad^ )  n  {(t k , Vr )}- The language 

of this product automaton either contains a single tree, (t k ,Vk ), in which 

case K  \= or is empty in which case K  (p. This discussion suggests 

the following automata-based model checking algorithm. Given a branching 

temporal formula ip and a Kripke structure K  with degrees in D:

1. Construct the alternating automaton for the formula, A o ^ .

2. Construct the product alternating automaton A ^ ^  =  K  x An,v - This 

automaton simulates a run of A p ^  on the tree induced by the Kripke 

structure K.

3. If the language accepted by A 1̂  ^ is nonempty then ip holds for K ,  other

wise not.



www.manaraa.com

CHAPTER 4. AUTOM ATA FOR TEM PORAL LOGIC 75

Thus, a nonemptiness check for HAA is required to check CTL* properties in 

K. The general nonemptiness check for HAA cannot be done efficiently [Ber95]. 

Fortunately, taking the product with the Kripke structure K,  results in a 1- 

letter HAA over words (i.e. an HAA with |Ej =  1 and D = {1}), for which 

a nonemptiness check can be done in linear time [Ber95]. This is because the 

2 Props labeiiing (resulting in the 1-letter reduction) and the branching structure 

of K  (resulting in the automaton over words, rather than trees) are embodied 

in the states of A p  since every state of is associated with a state in K.

Therefore, all the copies of the product automaton that start in a certain state, 

say one associated with s, follow the same labelling: the one that corresponds 

to computations of K  starting in s. Let us now define this product automaton. 

Let =  (2-Pi'°ps5 £), ^  g0> {Gy,By))  be an HAA which accepts exactly

all the D -trees that satisfy tp and let K  = (Props, S', P ,s 0,L) be a Kripke 

structure with degrees in D. The product automaton is then an HAA word 

automaton A p  =  ({«}, S  x 5, (so, go), (S  x Gv , S  x B v)) where 5 is defined 

as:

• Let Q e Q<p, s e  S, s u c c r ( s ) — (s0, . . .  ,S(d(sy i j )  and 5(p(q,L(s),d{s))  =  

a. Then £((s,g),a) =  a ', where a ' is obtained from a  by replacing each 

atom (c, q') in a  by (sc, q’).

A run of an alternating automata is a tree; in the sequel we will display 

this tree as an And-Or tree with each infinite branch truncated when a node is 

revisited on a branch. Therefore the product automaton will be displayed in this 

fashion (note we do not show the A and V choices when only one successor state 

exists in the product automaton). For example consider the product automaton 

of the Kripke structure in Figure 4.4 and the HAA for the CTL formula AGAFp 

(Figure 4.5) given as an And-Or tree in Figure 4.6. To illustrate how this 

product is obtained we show how the run proceeds from the initial state. In 

the initial state the automaton is in state go and takes as input the label from
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state x  (namely -<p) in the input tree induced by the Kripke structure K:

% o, 2) =  ((0, g: ) A (1,gi)) A ((0, g0) A (1, g0))

If we consider y to be the first successor of x and k the second successor of x 

then we get:

% 0 > {^p}, 2) =  ((y, qx) A (fc, qx)) A ((y, q0) A (&, q0))

which is displayed graphically in Figure 4.6. Note that all the branches that 

reach the state (k, qi) are trivially accepting since a t ru e  is read in the transition 

function. All other branches are infinite and their acceptance is determined by 

the acceptance condition ({}, {gi}): the infinite branches with a qo component 

are accepting (since go is in a universal set and go & B,  i.e. inf(ir) H {gi} =  0, 

where n is any of the infinite branches with a go component) whereas all the 

infinite branches with a gi component are not accepting (since qi is in a universal 

set and i n f  (tv) n  {gi} /  0, where tv is any of the infinite branches with a q\ 

component). The run of the alternating automata is therefore not accepting 

and hence K, x AGAFp.

In the following sections we consider the efficient translation of CTL, LTL 

and CTL* formulas to HAA.

4.4 CTL to 1-HAA Translation

Given a CTL formula <p and a set D C N, a 1-HAA A d)V = (2Props, D, cl(tp), 

(G:B))  can be constructed such that the language which recognises is 

the set of D- trees satisfying <p. The acceptance condition is (G, B), where G is 

the set of all E V  formulas and B is the set of all AU  formulas in cl(<p). The 

transition function for all a 6 2props and k 6 D is the following:

• 6(q, a, k) — true if q E a
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Figure 4.4: Kripke structure K  =  ({{p}, {^p}}, {x , p, 2:, k, h}, R , x, L)

9 <S(9,{^P},0 &{<!, {p}J)
9o Al=o(c, 9i) A Al=o(c,9o) Ac=o(c? 9o)
91 Ac=o(c’ 9 i) true

Figure 4.5: A D iAGa f p = ({{“'P}, {p}},A  {9o,9i},M o, ({}, {9 1 }))

Figure 4.6: And-Or tree for the product automaton K  x A d ,a g a f p ■
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• 5(q, a, k) =  false if q $ a

•  <5(->g, a, k ) — true if q £ a

• 5{->q, a, k) = false if q E a

• 6 {fa A fa ,a ,k )  = 5{fa,a,k)  A6( fa ,a ,k )

• S(fa v  fa,a>k) = 5{fa,a,k)  V 6{fa,a,k)

.  <y ( ^ , 0,A ) = A to 1(c,^)

.  5 { E X f a a , k ) = y kZ lQ{c,iP)

• C7 f a ,a ,k )  = S(fa, &■> k) V (5(^xsa,A:) A Ac=o (c> U fa))

• S{Efa U fa ,a ,k )  =  8{fa,a,k)  V (<$(^i,a, Ar) A Vc=o(c> ^ i  U fa))

• V fa ,  a, k) = 5{fa,a, k) A (5{fa,a, k ) V Ac=o(c> ̂  fa))

• 5(Efa V  fa ,a ,  k) = 5{fa,a,k)  A (5(fa,a,k)  V Vc=o(c> ^ i  ̂  W )

and for the derived operators:

• 6{AFip,a,k) =8{if),a,k) V Ac=o {c, A F fa

• 8{EFip,a, k) = S(ip, a, k) V V c = o  (c> EFip)

• 5(AG^, a ,*) =  6(iP, a, fc) A A « o (c>̂ ' P )

• 6{EGhp,a,k) =  6(i>,a,k) A \ Z ^ { c ,  EGi>)

AW and EW have the same transition function as AU and EU respectively, 

with EW in G. Whereas, AR and ER have the same transition function as AV 

and EV respectively with AR in B. The special structure of the HAA follows 

from the fact that each formula ip in cl((p) constitutes a singleton set {ip} in the 

partition and the partial order is defined by {-^i} < {^2 } iff fa  € cl (fa). Note 

how the existential set is formed by the rules for EU  and E V  and the universal
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set is formed by AU  and AV.  Furthermore, since each transition from a state 

ip leads to states in clfy) it must follow that an infinite run will get trapped 

either in an existential or universal set.

E xam ple  : Consider the CTL formula tp =  AFAGp.  For every D C N, 

the 1-HAA for tp is A Ditp = ({{p}, {-■£>}}, D, {g0, gi},<5, g0, ({}, {go})), where 5 

is given by the following table:

Q

qo A c i o M i J v A t o M o )

Qi false Ac=0 (c> 9l)

In state go (AFAGp), ifp  holds then the automaton can choose either to check 

whether gi (AGp) holds or to postpone this check to the future. It would, 

however, not be able to postpone it forever, since this will violate the acceptance 

condition: go must be seen only finitely often in the universal Si set associated 

with go- In state gi the automaton expects a tree in which on all paths p  holds.

4.5 LTL to HAA Translation

Here we consider formulas of the form A<j) for which 0 holds for all branches of 

the input tree and Ecj> where there exists a branch on which <f> holds, where <f> 

is a linear time formula.

In order to comply with the restricted transition structure of HAA the LTL 

formula must first be translated to a nondeterministic Biichi automaton. Note, 

for example, tha t the initial state in the alternating Biichi tree automaton for 

the formula E G F p , given in Figure 4.7, is neither part of an existential nor of 

a universal set.

The following approach is taken for the translation of the LTL formula to 

an HAA:
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Q

<10 Vc=o(c>40 Agi) Veto1 M o )
9 i V S o fo f l . ) true

Figure 4.7: A E g f p =  ({{rf, {“1p}},-D, {^o, g i } ,  <$, go, { g o } )

• 1. If the formula is of the form Ecf), construct the Biichi word automaton

that accepts </>, B<p — (E , ^ , . / ? ,  g o , F ) .

2. Translate B $ to the corresponding HAA, A q =  (E, D, S , go, (F ,0)).

• 1. If the formula is of the form AcJ), construct the Biichi word automaton

that accepts -<0, B ^  = (E, S, R , go, F).

2. Translate B ^  to the corresponding HAA, A-^. A-,^ =  (Tt}D,S,  

5,gO,(F ,0)).

3. Negate A-,^, A-,0  =  (S ,D , 5 , 5 ^ 0 , (0,F)).

The translation of a nondeterministic Biichi word automaton to an HAA 

is straightforward and essentially extends the word automaton by tracing it 

in a single branch of the tree automaton. Given a nondeterministic Biichi 

automaton B  = (E ,5 , F , g o , F )  the transition function of the corresponding 

HAA A =  (E, D , 5 ,8, go, (F, 0)) is defined for all s € S, a £ E and k G D:

k-1
5(s,ayk ) = \ J  \ f  (c, s*)

c= 0  5ieii(s,a)

If i?,(s,a) — 0 then £(s,a,/c) =  false.

Due to the translation via nondeterministic automata it is clear that a for

mula of the form E<f> will be translated to an HAA with only V-choices in 

its transition function whereas those of the form A(j) will only have A-choices. 

However, the translation via nondeterministic automata could also cause an 

exponential blow-up in size of the resulting HAA.
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E xam ple  : Consider the LTL formula tp = E(FGp  A GFq). For every 

D  C N, the HAA for <p is D, {si, S2 , 5 3 }, ^  ({^3 }, {})), where

5 is given by the following table:

s S(s,{p}yk) {?}>&)

S\ V S t e a i ) Vc=o(c»5i v  S2) V S f c « l ) V £ o fc « iV « * )

S2 false V S f c * * ) false v S ( c .« « )

53 false V*=o(<=, «a) false

The nondeterministic Biichi word automaton for <p is given in Figure 3.5. 

There are two existential Si sets in the partial order: one containing only state 

si and the other consisting of states S2 and S3 . State S3 is in the set G, hence 

from the fact that S3 is in an existential set a run will be accepting if S3 is seen 

infinitely often on a branch.

4.6 CTL* to HAA Translation

This section is based on the description given in [Ber95]. First, the set of 

maximal state subformulas of a formula max(ip), needs to be defined: ip is a 

maximal state subformula of (p if it is a state subformula and there are no other 

state subformulas of <p for which ip is also a state subformula. For example, let 

<p = AF(Xq V AFAGp), then max((p) = {q, AFAGp}.

Given a CTL* formula ip and a set D C N, we can construct an HAA A j j ^  

such that C(Ax>d)) *s exactly the set of D-trees satisfying ipy in the following 

fashion.

Apt f  is constructed according to the structure of ip. W ith each formula 

</? € cl(ip) an HAA A^  is associated that is composed from HAAs for the 

formulas in max(ip). We assume that the state sets of the composed HAAs 

are disjoint and that for each one E =  2Props (i.e. if an HAA does not in

volve all the atomic propositions then it is extended). Now for each formula in
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max{<p) — {<£>1 , . . . ,  (pn) we associate an HAA A Vi =  (E, S l, 8l , Sg, B 1)) and

its complement A^., with 1 < i < n. A,p is now constructed as follows:

• If <p =  p or (p = -ip, for some p  € Props , then A^ is a one-state HAA.

• II ip = ipi A tp2 then A^ =  (E ,# 1 U 5 2 U {s0},£, So, (f?1 U G2, B X U B 2)), 

where so is a new state. For the states in S 1 and S 2, S agrees with 61 

and 52 respectively, but for .S'o and for all a E E we have that S(so,a) = 

S(sl,a) A5(sg,a). The set {so} therefore constitutes a singleton transient 

set, with the ordering {so} > Si for all the sets Si in S 1 and S 2.

• <p = <px V ip2 is similar to the one above except that $(so,a) =  5(sq,o) V 

<5(sg,a).

• If p  = Efa first build an HAA A^ over the alphabet E' =  2max ĉp\  i.e. 

Ajp regards the formulas in max(<p) as atomic propositions. First build 

a Biichi word automaton, (S', S, R, sq, F),  for <p over the alphabet E', 

and translate this automaton to an HAA, A^ = (S , D , S ,5 f, so, ( F , 0 ) ) ) ,  

as described in section 4.5. The HAA A ,̂ accepts exactly all the E'- 

labelled tree models of <p. A p is obtained by adjusting A{, to accept 

the alphabet S. Intuitively, A^ starts additional copies of the HAAs 

associated with formulas in max((p), ensuring that whenever A[p assumes 

that a formula in max(ip) holds, it indeed holds, and whenever A{, assumes 

a formula does not hold, the negation of the formula holds. Formally, 

A„ =  (E, D , S  U UiCS4 U S i),6,8Q,{F\J  U G*), U F ) ) ) ,  where

6 is defined as follows: for states in U j(Sl US*), it agrees with 8l and <P 

and for s € S' and for all a € E we have

£ ( s , a ) =  Y  ( 5 ' ( s , a ' ) A  f \  S*{ql0,a)  A f \  , a) )
a'eS' ipiGa1

The Sj  sets in S  are above all the sets Si in (S’2 U in the partial

order.
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• If (p — Acf) then construct and negate the HAA for E-xf).

The correctness of this construction is shown in [Ber95].

E xam ple  : Consider the CTL* formula ip — AFG(EFp).  The formula is 

of the form A(j> hence we construct the HAA for EGF{AG~>p) and negate it to 

get the HAA, for all D  C N. The formula, <p = AG->p is the only formula 

in max(EGF(AG~'p)), and hence we need to construct the HAA for A E,<p and 

A Ej(p as follows:

A d#  = ({{“p}, M } > A t a } }£,g2,(0,0)) with

g 5(q,%k)

Q2 A to f e © ) false

a d ,<p = ({{^p}, (M )) with

q % ,0 ,/c)

92 Vc=o(c>?2) true

The next step is to create a Biichi automaton, B EGF(p, f°r the linear time 

formula EGFcp from which we can construct an HAA for A'D EGF(p.

B eg f<p — ({ { ^ p } ,M } 5{go,gi},-R,go,{gi}) with

{“^}) =  R(qu  {-'¥>}) =  {^0}

#(go, M )  =  R(qu  M )  =  {gi}

Thus, A'DEGFip =  ({ { ^} > M } >  A {go ,g iM ',go .({g i}}0)) with

q {“•<?}> *0 tf'(g, M ,* 0

9o V S f e ® )

gi V S f e ® ) V to ( c .« )

We can now compose the automata A E)ffi1 A Ejip and A'D EGF(p into the one 

automaton over the alphabet {{->p}, {p}}: A D)EGF(p =  ({{-p}, {p}}, jD, {go,gi, 

g2 ,g2 }>^go,({gi})0 )) with
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9

90 ( V S f e ® )  A V « o(c, 52)) V (Vc=o(c,?i) A A tf tc ,® )) V £ 1  (<=.»)

91 (Vc=o(c>9o) A Vc=o(c. ^2)) V (V==o(c,9i) a  A S ( c , 52) ) Vc=o(c’9o)

92 A « o(c»92) false

92 V * = o ( c , « 2 ) true

Note that for S(q0: {p}, k) and 6 (qi, {p}, k) the expressions are reduced from 

(Vc=o (c> 9o) Atrue) V(Vc=o(c) 9i) A /alse)). All that is required now is to negate 

this automaton to get A D^  =  ({{-p}, {p}},£>, {g0, 9 1 , 9 2 .© }J ,9 o , (0, {9 1 }))

with

9 %> {^P}5&)

9o ( A « o M o )  V A t o W ) )  a (A fco 'te?!) V V«ol fc«2)) Ac=o 9o)

9i (A c ife g o )  V A«o1(c.92)) A (A to H c^ j) V V ^ ( c . ? 2)) Ac=o(c> 9o)

92 V ^ o (c>52) true

92 A to 1(c,92) false

Since q± is in L? and is part of a universal set (with g0), a run will only be 

accepting if the state qi is seen only finitely often on every branch. This will 

happen if on every branch, from a certain state onwards, qG is visited infinitely. 

From the transition function it can be seen that whenever a p is read in the input 

or when Vc=o (c> ̂ 2 ) holds (which is equivalent to EFp being valid) a copy of the 

automaton visits qQ. Therefore, a run is accepting if on every branch EFp holds 

from a certain position onwards, which is precisely what AFG(EFp) states.

4.7 LinearQTJj* to HAA Translation

In the translation of both LTL (section 4.5) and CTL* (section 4.6) to HAA 

there is a possibly exponential increase in the size of the resulting automaton. 

This increase is due to the translation of the linear time fragments of the for

mulas to nondeterministic Biichi word automata. The translation of the linear 

time fragments to alternating Biichi word automata is however linear, and since
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nondeterministic Biichi word automata is a subset of the alternating automata, 

it is possible to define a sublogic of CTL* for which a linear translation exists 

to HAA. We call this sublogic TmearCTL*.

Nondeterministic automata can only express existential choice and there

fore if we consider the translation of LTL formulas to alternating Biichi word 

automata as given in Figure 4.1 it is clear that the A-connectives, that allow 

universal choice, must be avoided in the transition function. From the transla

tion rules in Figure 4.1 it can be seen that the following three rules can produce 

A-connectives: ipi A V2 j V’l ^  ^ 2  and V  fa- From the translation rules 

for these we can see the restricted form should be: prop A ij), prop U ij) and 

'ijj V  prop, where prop is either an atomic proposition or its negation. The 

sublogic LinearCTL* can now be defined as follows:

S ::= true \ fa lse  | g | - i g | S A S | S V S |  AP  A I EJ?e 

P e  S [ S A P e  | P e  V P E | A P e  I S U P e  | P e  V S 

P A S | P A A P A | S V P A j X P A | P A [/ S | S F  P A

It is interesting to note that LinearCTL* is a sublogic of LeftCTL* de

fined in [Sch97]. There the idea was to find sublogics of CTL* for which a 

translation exists to CTL. LeftCTL* is such a logic, but with a potential ex

ponential blowup in the size of the resulting CTL formula. LinearCTL* is the 

sublogic of LeftCTL* for which this translation is linear. The difference between 

LinearCTL* and LeftCTL* is that the latter includes P E A P E and P A V P A 

formulas, which indicates why the translation from LeftCTL* to CTL can be 

exponential.

4.8 Implementation Issues

We implemented a translator for translating CTL* formulas to HAA. The for

mula is translated into two formats of HAA that are used for different purposes:
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• An internal data structure that is used for model checking.

• UTjj)K source is generated for displaying the transition functions of the 

HAA in tabular form, to allow better analysis of the relationships between 

formulas and automata. This format is especially useful for debugging 

and optimisation of the translation algorithm as well as for generating 

examples that can be used in documentation.

The efficiency of the translation algorithm is dependent on the cost of the 

translation of linear time formulas to nondeterministic Biichi word automata, 

as required during the LTL and CTL* translations. The reason for this is that 

during this translation an exponential blow-up might occur. Note this will not 

happen when translating CTL formulas, since a linear translation to 1-HAA 

exists (see section 4.4).

We use an adaptation of the LTL to nondeterministic Biichi word automata 

algorithm of [GPVW95]. The original algorithm was designed to build the au

tomaton on-the-fly during the model checking procedure, whereas our version 

builds the automaton beforehand. We argue, in accordance with the view of 

Lichtenstein and Pnueli [LP85], that temporal formulas for specifying proper

ties to be model checked are generally not very long. Hence, even if there is a 

exponential size increase in the size of the resulting automaton, this automaton 

will seldom have more than a few hundred states. Building the automaton be

forehand is therefore acceptable, but more importantly this allows us to reduce 

the size of the automaton by removing duplicate states. A state is considered 

to be duplicated by another state if both states have similarly labelled outgoing 

arcs and are either both accepting (in F) or both rejecting (not in F). A dupli

cate state is removed by replacing all its incoming arcs by arcs to the state it 

duplicates and then deleting it. Since, new duplicate states can be created by 

deleting others, this process is repeated until no more duplicates exist.
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LTL Formula Original Optimised
AFG(p A Fq ) 6 3
A(FGp A GFq) 11 3
A((FFp A G^p) V {Fp A GG^p)) 22 2

Table 4.2: Comparing the number of states for two LTL to NBA translation 
algorithms.

In Table 4.2 the results of the original algorithm of [GPVW95] and the one 

optimised by removing duplicates are compared for three formulas. The first two 

formulas AFG(p AFq) and A{FGp AGFq) are equivalent, but the unoptimised 

algorithm reports that the first one is more succinct, whereas after removing 

duplicate states the automata are identical (given in Figure 3.5). The third 

formula is taken from [GPVW95] and is the positive form of the unsatisfiable 

formula A-*{FFp <-> Fp) (the form it is given in [GPVW95]).

4.9 Concluding Remarks

The translations from CTL, LTL and CTL* to HAA given in this chapter are 

adapted from [Ber95]. The observation that a sublogic of CTL* exists for which 

a linear translation exists to HAA is new (section 4.7).

In [Ber95] it is shown that the nonemptiness problem of the product au

tomaton of a Kripke structure and the HAA for a CTL* formula reduce to 

the 1-letter nonemptiness problem and can be solved in time linear in the size 

of the product HAA. Furthermore, since CTL formulas translate linearly to 

HAA and the translation of CTL* formulas is exponential in the size of the 

formula, it follows that automata-theoretic model checking with HAA matches 

the known model checking complexity for CTL and CTL* model checking. In 

[Ber95] it is also shown that the 1-letter nonemptiness problem can be done in a 

space efficient fashion. Unfortunately, the algorithm proposed for time efficient
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nonemptiness checking is incompatible with the one that allows space efficiency. 

This is because the time efficient algorithm is a global algorithm (product HAA 

must be kept in memory throughout the procedure) and the space efficient al- 

goiithm is a local algorithm (only the part of the HAA being explored is kept 

in memory).

In order to tackle large model checking examples an algorithm is required 

that is both time and space efficient. In the next chapter we consider the theory 

of 2-player games as a way of defining such an algorithm for the nonemptiness 

checking of HAA.
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Chapter 5

N onem ptiness Gam es for 

H A A

Two-player games form a natural framework for the study of interactions. One 

player represents a System and the other represents the Environment of the 

System. A game can then be viewed as specifying the possible interactions 

between a System and its Environment. Two-player games are also often viewed 

as being played by a Player (System) and an Opponent (Environment). The 

Player is trying to win the game, whereas the Opponent, or spoiler, is trying 

to stop this from happening. Either Player or Opponent then has a winning 

strategy for a game if he/she can win any play of the game regardless of the 

other’s moves.

Recently, much work has been done in the development of game semantics 

for programming languages [Abr97, AJ94, McC96]. Here the programs are 

modelled by the rules of how the System should play the game (strategies). 

Bisimulation equivalence can also be formulated as a two-player game, where 

the Player is trying to show that two systems are bisimilar and the Opponent 

is trying to show that they are not [Sti96, Sti97].

89
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Emerson and Jutla were the first to use game-theory in combination with 

temporal logic [EJ88]. They used infinite Borel games to show that satisfiability 

checking for CTL* is in deterministic double exponential time. Stirling showed 

how Ehrenfeucht-Fraisse games [Tho93] can be used to capture the expressive 

power of the extremal fixed point operators of the ^-calculus [Sti96]. To the 

best of our knowledge, Stirling was also the first to use two-player games for 

model checking [Sti95] when he reformulated the model checking problem for 

the /i-calculus as a two-player game.

Another application of game-theory is in the study of reactive systems, 

where the effective construction of a winning strategy for a game is an ap

proach to the synthesis of reactive programs. The game represents a desired 

property of the system and by constructing a winning strategy for this game a 

reactive system that exhibits this property is developed. An automat a-theoretic 

approach is taken in [PR89b, PR89a, Tho95, BLV95, Tho97] by considering the 

property to be checked to be an automaton on infinite words and the game to 

be the nonemptiness check of the language accepted by the automaton.

For synthesis the problem is to construct a reactive system that has a desired 

property. However for model checking we only need to check whether a given 

system exhibits a property. Here we will follow the games approach to synthesis 

for doing model checking, namely, to play a game to solve the nonemptiness 

problem for HAA. We refer to this game as the nonemptiness game.

We will show that formulating the nonemptiness problem for HAA as a 

game has two main advantages:

• The game is simple and can be played without prior knowledge of the 

automata-theoretic details.

• Although the game does not improve the worst-case complexity of the
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nonemptiness check for HAA, it leads to a simple and efficient implemen

tation for checking nonemptiness of an HAA.

In [SS98] it is also argued that the games approach to model checking al

lows better diagnostics when a property is invalid for a given system. Essentially 

the user plays a game against the winning strategy for showing the property is 

invalid. The information gained in this play can give the user a better under

standing of why the property is invalid.

We first define the nonemptiness game and then show that an efficient im

plementation will require that winning positions (i.e. positions in the game 

from which a player wins a play) must be stored and later reused when these 

positions are visited in a different play. The playing of a new game from a po

sition to establish the winning player from that position is introduced as a way 

to ensure that only “correct” winning positions are stored. We show pseudo

code for the nonemptiness game algorithm and informally argue its correctness. 

In the last part of the chapter we analyse the complexity of the nonemptiness 

game and show how it relates to other work on CTL* model checking.

5.1 Nonem ptiness Game

The nonemptiness game is defined as a two-player game, in which player 1 will 

try to show that the HAA is empty whilst player 2 will try to establish that it 

is nonempty. A play of the game is a possibly infinite sequence of positions1 of 

the form (go,so), (g i ,s i) , . . .  where each position (gi,Sj) is a node in an And- 

Or tree (in our case, the product of the HAA for the formula and the Kripke 

structure). Which player makes the next move is determined by the structure 

of the And-Or tree: player 1 (Brandy) moves whenever there is an A-choice 

and player 2 (Port) when there is an V-clioice2. The players therefore do not

1 Positions in the game setting axe equivalent to states in the automata setting.
2The player names reflect when the player moves: Brandy and Port.
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Player 1 (Brandy) Wins Player 2 (Port) Wins
Play reaches a fa lse Play reaches a true
After a move by Port, 
that revisits a position 
in the current play, 
in fpos  (playn) fl G = 0

After a move by Port, 
that revisits a position 
in the current play, 
infpos(play7r) f]G ^  0

After a move by Brandy, 
that revisits a position 
in the current play, 
infpos(playir) fl B  ^  0

After a move by Brandy, 
that revisits a position 
in the current play, 
infpos(playn) Pi -B =  0

Figure 5.1: Winning Conditions for a Play in the Nonemptiness Game

take turns as is the case in many standard games. The winner of a play can 

be determined when either a node that is labelled true (Port wins) or fa lse

(Brandy wins) is found in the play or when a position in the current play is

revisited.

When a position in a play is revisited it represents the scenario where there 

is an infinite path in the product HAA and therefore we need to consider the 

acceptance condition (G ,B ) to determine which player wins the play. Recall 

the acceptance condition for an infinite path, 7r, in an HAA:

1. if vr gets trapped in an existential Si and i n f ( %) fl G ^  0

2. if 7r gets trapped in an universal Si and i n f ( 7r) fl B  = 0

Let us define a set of positions, i n f  pos (play n), to be the positions in the cur

rent play, p l a y that are visited infinitely often on p l a y Existential Si only 

contain disjunctively related elements, thus P o rt will be making the choices of 

which move to make in these Si. Universal on the other hand, only contain 

conjunctively related elements, from which Brandy makes the next move. The 

definitions of existential and universal sets combined with 1 and 2 above are 

sufficient to define the winning conditions of a play, summarised in Figure 5.1.

Since the intentions of the players when making moves are backwards sound,
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the following rule can be used to combine the results of plays: if Brandy (Port) 

moves from position s to s' in a play and s' is the start of a winning play for 

Brandy (Port), then Brandy (Port) also wins from s. A player has a winning 

strategy for a game if the player can win any play of the game from a position 

regardless of the opponent’s moves.

T h eo rem  1 Player 2 (Port) has a winning strategy in the nonemptiness game 

from the initial state of an HAA iff the language accepted by the HAA is 

nonempty.

P roof: The correctness of the Theorem follows directly from the construction

of the winning conditions of the game: each play in the game is essentially 

checking the acceptance of a (possibly) infinite path in the HAA. □

E xam ple: If we play the nonemptiness game on the HAA, K  x A d ,a g e f p  

from Figure 5.4, then it is clear that whenever P o rt has a move it can reach the 

position (k,qi) which is a winning position for P o rt (the winning players are 

shown as labels on the positions in Figure 5.4). The only interesting plays are 

those that revisit (x,go) and (£,gi), for example for the left-most play (play^), 

infpos{playlx) =  {(a,® ), (y,go)? («j9o)}i but since B is empty P o rt wins this 

play. P o rt in fact wins every play, regardless of Brandy’s moves, and from 

Theorem 1 it then follows that K  x A d ,a g e f p  is nonempty, and hence also that 

K  |= AGEFp.

T heo rem  2 Given a Kripke structure K  and a CTL* formula ip then K  f= p  iff 

Player 2 (Port) has a winning strategy for the nonemptiness game on K  x i ^ ,  

where A p ^  is an HAA such that the language accepted by An,tp is exactly the 

set of D-trees satisfying ip.

P roof: Theorem 2 follows directly from Theorem 1 and captures the relation

ship between the model checking problem and the nonemptiness game. □



www.manaraa.com

CHAPTER 5. NONEM PTINESS GAMES FOR HAA

Figure 5.2: Kripke Structure K  =  ({-{/p}, {p}}, {x, p, z, k}, R , x, L)

Q <$(q, {p}J)
Qo Vr=p(c, <?l) A Ai=n(c>9o) Ac=o(c> qo)
Qi V c=o(c’ qi) true

Figure 5.3: HAA A DyAGEFp = ({{-*p}, {p}},D ,{q0 ,qi}, 6 ,q0, ({},{}))

P o rt
'x ” The labels indicate the player 

winning from a position
A

A
Port

y a,
P o rt

P o rt P ort

X A,
P o rt P o rt

P o rt P ort

Brandŷ
fya

P o rt

Brandy [Z ,CJ

Brandy (z ,fl Brandy fx fl.

Brandy (x fl

Z ,q ] P o rt
P o rt P ort

X f l  ] P o r t

P o rt Z ,q

P o rt X fl

Bra n d y / ' '  ^ s ^ P o r t

K )  &

Figure 5.4: And-Or tree for the product automaton K  x A E ,AGEFp
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Prom Theorem 2 we can now construct an efficient algorithm for doing CTL* 

model checking. The first part is to construct the HAA from the CTL* formula 

and then to play the nonemptiness game on the product of this HAA and the 

Kripke structure. The construction of the HAA from a CTL* formula is given 

in section 4.6. Next we will show how to implement the nonemptiness game in 

an efficient fashion.

5.2 Implementing the Nonemptiness Game

In the previous section it was shown that the moves of the nonemptiness game 

are determined by the structure of the And-Or tree. We have implemented a 

depth-first algorithm for finding winning plays in an And-Or tree. An efficient 

implementation of in fpos  is obtained by keeping track of the positions in the 

current play on a stack data-structure, where a new position is pushed every 

time a move is made and popped whenever a winning play is found from the 

position. The elements in in fpos  are therefore all the elements in the stack 

between the depth where a position is revisited and the current depth (value 

of the top of stack pointer). The stack is also used to keep track of the other 

possible moves from a position, but the moves themselves will only be made if 

the depth-first algorithm requires it later (i.e. after backtracking) in the search 

for a winning play. For example when looking for a winning play in the initial 

position of Figure 5.4 the left-hand choice at the A-node is taken and the fact 

that there is a right-hand choice is recorded in the stack, but it is only explored 

when it is clear that the left-hand choice returns a winning play for P o rt. This 

approach is in general more memory efficient than a breadth-first algorithm 

where all the choices are explored simultaneously.
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5 .2 .1  S to r in g  R esu lts

Unfortunately, although the algorithm outlined above is memory efficient, it is 

not time efficient. The reason for this is that “winning” games from a position 

can be replayed. Considering again the example of Figure 5.4, it is clear that in 

the play (re, go)> (jb (fa)> (fa), (x, <?i) there is a winning play for P o rt in position 

(re, </i), but this position arises three more times in other plays and the fact 

that P o rt has a win from this position will be re-established each time. A 

results store is required to keep track of winning positions so that when they 

are revisited in different plays then the results can be reused. The problem is 

however to determine when to store the results, or to put it another way, when 

a potential winning position is stored to be certain that the winning position 

is indeed correct. One possibility is to store the winning position when all 

moves from a position have been played (i.e. when the depth-first algorithm 

backtracks). However, since a play is truncated whenever a position is revisited, 

it may happen that an incorrect result can be stored when all moves from a 

position have been made. The problem is that a winning play for a player may 

now be missed since that play may have been truncated at some point.

For example consider a nonemptiness game played in a left-most depth- 

first fashion on the And-Or tree of Figure 5.5 whilst storing winning posi

tions in a results store. When considering the position (z: qi) on the play 

(^)qro),(y,(/o)) (2;,go),(^,gi)) (y ,g i),(^ ,g i),(a:,g i) this position, i.e. (z,qi), will 

be recorded as a win for Brandy (since (rr,qi) is revisited). Clearly, however, 

from the position (x,qi) the position (/c, qi) can be reached and this is a win 

for P o rt and hence {z}qi) should be recorded as a win for P ort. In Figure 5.5 

it is indicated how recording (z, q\) as a win for Brandy and then reusing this 

result causes the nonemptiness game on the And-Or tree of Figure 5.4 to be 

won by Brandy, which is incorrect.

A mechanism is required to ensure that when all moves from a position have
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Brandy

Not Plnvrd

Add Storr: 
Brandy

From Storr: 
Brandy

B r a n d y /  
/ ....

Arid Storr: Arid Storr: ( X
B r a n d y ^ /  \ v P o r t  |

Brandy fz ,q.
Add Storr: I

B randy[Z  ,q
Brandy

Brandy X f l  ----
Brandy f X fl

Figure 5.5: Incorrect Game with Results Store 

been made that the player winning from this position is indeed correct.

5 .2 .2  N ew  G am es

In order to ensure that the results stored as winning positions are indeed correct, 

it is proposed that a new game is played whenever all the moves from a position, 

say s, have been played. This new game takes as its initial position s and a 

new stack and new results store are used. Since a new game uses a new stack 

and a new store, the intuition is that plays that were previously truncated 

will be played to completion in the new game, hence ensuring that the correct 

result is obtained for the initial position of the new game. When a new game is 

completed (i.e. the winning player from its initial position is found) the stack 

and results store for the new game are deleted and the result of the new game is 

stored in the original3 results store. Whenever a position is visited in the new 

game it is first checked whether this position is not in the original store, since

'The store used for the initial game will be referred to as the original store and is never 
deleted.
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if it is that result can be used. Note that when we refer to the nonemptiness 

game we refer to the initial (first) game together with all the new games that 

are played in order to determine the winning player for the initial position (of 

the first game).

New games may have to be played recursively, i.e. whilst playing a new 

game another new game can be started etc. Therefore, to ensure that new 

games will not be played infinitely, a new game is not allowed from a position 

from which a new game is already being played. In fact, when a new game 

is being played one can restrict the play of more new games from positions 

that are on the current play of any of the previous games (initial game and 

all new games currently being played). The reason for this restriction is that 

new games for positions that are on the current play of a previous game will be 

played later on (precisely, when the positions are backtracked in the previous 

game). This therefore has the effect of just postponing the new game. Note 

that the initial position of a new game is by definition also part of the current 

play of the previous game and therefore this restriction also ensures that new 

games cannot be played infinitely.

There is one important exception to this restriction of when to play new 

games: when a position is in the acceptance condition (G ,B ) and if no new 

game is currently being played for this position then a new game must be 

played from it. The reason for this exception is that positions in the acceptance 

condition influence the results of games on infinite plays and without playing 

new games from these positions infinite plays might be missed. In section 5.3 

where the correctness of the nonemptiness games is discussed the need for this 

exception will be highlighted again.

E xam ple: In Figure 5.6 it is shown how a new game is played when the 

only move from {z^q\) has been played and the result of this new game is that 

{zyq\) is a winning position for Port. Reusing this result when (z,qi) is visited
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Not Plnyed

Add Store: 
P o rt

Brandy,

/  Brandy/  \ P o r t  Brandy^

Q g  g
‘ f l j  g g )  T  Brandy f  Z ,q

Brandy
T  Brandy f x f l

Brandy f x  jC]

Add Store 1: \ /  Add Store 1 
B r a n d y ./  Port

Figure 5.6: New Gaines combined with Results Store
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again enables P o rt to win the game from the initial position which is the correct 

result. No further new games are played for the positions visited in the new 

game from position (2,gi), since all these positions are on the current play of 

the initial game. New games are however played for the positions in the initial 

game, but in those cases the results are immediately found in the original results 

store (due to the depth-first nature of the plays).

5.2 .3  A lg o r ith m

An algorithm for playing the nonemptiness game is given in Figure 5.7. In order 

to illustrate how the algorithm works we first need to show that some moves 

made by the players relate only to the structure of the HAA for the formula, 

whereas other moves depend on the number of successor states from some state 

in the Kripke structure. For example, if we are in state (&, go) in Figure 5.4 

then the next move depends on the following expression (from the transition 

table of Figure 5.3):
k - i  k- lV (c>9i) A / \  (c, g0)
c=0 c=0

The A in the middle of this expression is a move for Brandy, and does not 

depend on the fact that state x  has two successors (k — 2). Whereas the moves 

for Vc=o(c’^i) (P°r f moves) and Ac=o(c’^o) (Brandy moves) are dependent on 

the number of successor states of the Kripke structure. We make a distinction 

between these two types of moves and they are handled by different parts of the 

algorithm: we call the former AND and OR moves and the ones dependent on the 

successor states AND_SUC and 0R_SUC moves. Essentially this distinction allows 

the state of the Kripke structure to be hidden in the algorithm of Figure 5.7: 

we will only refer to Alt_State which is the state of the HAA for the formula

being checked. Alt_State can take on 6 different values: AND, OR, AND_SUC,
0R_SUC, TRUE and FALSE.

The algorithm consists of two functions Game and Play that both return a
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1 Player Play(Alt_State s)
2 { while (!Finished) {
3 action = MovelnK(s);
4 if (action == no_more_moves) Finished = TRUE;
5 else {
6 switch (s) {
7 case AND.SUC:
8 switch (action) {
9 case new_position:
10 if ((result=Game(s,Expand))==Brandy) Finished = TRUE;
11 if NotPlayedBefore(s) {
12 PlayNextGameO;
13 if ((result=Game(s,Expand))==Brandy) Finished = TRUE;
14 ReturnToPreviousGame(result);
15 >
16 s = BackTrack(result);
17 break;
18 case B_in_Infpos : result = Brandy; Finished = TRUE; break;
19 case no_B_in_Infpos : result = Port; break;
20 case Brandy„win : result = Brandy; Finished = TRUE; break;
21 case Port_win : result = Port; break;
22 }
23 break;
24 case 0R_SUC:
25 // same as case AND_SUC, but with Port substituted for Brandy and G for B.
26 break;
27 > > }
28 return result;
29 }
30
31 Player Game(Alt_State s, int mode)
32 -( if (mode == Play)
33 if (s == AND)
34 if (Game(s.left,Play) -= Brandy)
35 return Brandy;
36 else
37 return Game(s.right,Play);
38 else if (s == OR)
39 if (Game(s.left,Play) == Port)
40 return Port;
41 else
42 return Game(s.right,Play);
43 else if (s == TRUE) return Port;
44 else if (s == FALSE) return Brandy;
45 else return Play(s);
46 if (mode == Expand) {
47 s = CreateExpr(s);
48 return Game(s,Play);
49 > >
50
51 Initialise:
52 1. Generate HAA from formula with initial node of HAA being init.
53 2. if (Game(init.Expand) == Port) printf("Formula Satisfied");
55 else printf("Formula Invalid");

Figure 5.7: Algorithm, for Nonemptiness Game.
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winning player from a specific position. Game, when in the Expand mode, takes 

care of the lookups in the transition table (using the state of the HAA and 

the state of the Kripke structure as indexes) of the HAA for the formula to be 

checked. After an expression is expanded by CreateExpr, Game is called in the 

P lay mode and plays the moves related to the structure of the HAA, i.e. for 

AND and OR (as defined above). It also checks whether Brandy or P o rt has a 

trivial win in the case when respectively a FALSE or TRUE was expanded in the 

transition table. However, when the next move requires the successor states 

of the current Kripke state to be evaluated then the Play function is called. 

Note that when P lay  is called only one of the two players will be making the 

moves. The function MovelnK makes a move by generating a successor state in 

the Kripke structure. If the position reached after this move has not been seen 

before in the game then Game is called in the Expand mode from this position.

Here follows a brief description of each function being called in Game and 

Play:

C re a te E x p r This function does the lookup in the transition table and expands 

the entry it finds to an And-Or expression or to TRUE or FALSE. Expres

sions are created in such a fashion that positions from lower Si sets are 

to the left of the A or V. This, combined with the fact that the moves on 

the left sides of a A or V choice are played first (see function Game), means 

that winning positions are first established for positions in lower Si sets 

in the partial order. In terms of the CTL* formulas this has the effect of 

first establishing the truth-value of all the state-snbformulas before the 

truth-value of the original formula.

M ovelnK  This function has several purposes, firstly it chooses a successor of 

the current position, it then checks whether this new position is on the cur

rent play, i.e. in the stack, if so it returns a value stating whether a posi

tion in B (or G) was found on this cycle, depending on whether it is a move



www.manaraa.com

CHAPTER  5. NONEM PTINESS GAMES FOR HAA 103

by Brandy or P o rt that causes the cycle to be closed (B _in„Infpos, . . . . ) .  

If a cycle isn’t closed by the new position a check is made in the results 

store to see if this position is winning for a player, if so either Brandy_win 

or P o rtjw in  is returned. Lastly, if the new position is neither on the 

stack nor in the results store, it is pushed onto the stack and the value 

new _position is returned. When all the successors have been visited 

from a position then no_more„moves is returned.

B ackT rack  Backtrack is called when a winning position for one of the players 

is found. Backtrack stores this result in the results store and also pops the 

entry from the stack and returns the state of the HAA so that successors 

of this (old) state can now be evaluated. The results store is implemented 

as a hash table for fast access. When Backtrack is called after a new game 

has finished the result is stored in the original results store (i.e. the one 

associated with the very first game). This ensures new games will only 

be played once for every position.

N o tP layedB efo re  Checks whether a game is already being played from the 

current position or whether the position is on the current play of any 

previous game and not in the sets G or B.

P lay N ex tG am e  Creates a new results store and new stack for the new game. 

Note, creating a new store and stack is simply done by incrementing a 

Game counter that would be used as part of the stack and store entries 

thus avoiding conflict with the entries from other games.

R e t u rn T o P rev io u sG am e Do the reverse of the previous function: clears the 

new results store and decrements the Game counter. Currently the value 

of the Game counter partitions the hash table (results store), thus making 

it easy to clear the table when a new game is finished. Note the new stack 

will be empty by definition, due to the BackTrack function.
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5.3 Correctness

Since we only gave an informal description of our algorithm for playing the 

nonemptiness game, we will not formally proof its correctness. Instead we will 

give some informal arguments to illustrate why the use of the new games can 

guarantee that the correct player wins the nonemptiness game.

From Theorem 1 we know that the nonemptiness game without a results 

store will correctly determine the winning player from the initial position of 

an HAA. Clearly, one can generalise Theorem 1 so that it holds for a game 

started in any position, i.e. the nonemptiness game from position s will correctly 

determine the winning player from position s when no results are reused.

Let us call such a game that can determine a winning player from a position 

without reusing any results a perfect game. We can now define a safe game 

from position s as either being a perfect game or a game that can determine 

the winning player from s by only reusing the results from perfect games. The 

games we have looked at so far in this chapter are classified as follows. The 

game played on the tree of Figure 5.4 is a perfect game (hence also safe), since 

it didn’t reuse any results (this result is direct from Theorem 1). The game 

played on the tree of Figure 5.5 is not safe, since the result that is reused in 

position (z, qi) is not the result of a perfect game. The game played on the tree 

of Figure 5.6 is safe, since the new game from (2 , q\) is a perfect game.

In order to show that the nonemptiness game is correct, we need to show 

that the nonemptiness game is a safe game. Since we play a new game for every 

position in the initial game of the nonemptiness game, we only need to show 

that every new game played is a safe game.

Let us first consider the case without postponing new games if they are 

on the current play, in other words, during a new game further new games 

are played when a position is backtracked unless the position is one for which
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we are already playing a new game (to avoid an infinite cycle of new games). 

The number of these new games is bounded since there is a finite number of 

positions in the And-Or tree representing the product of the finite state Kripke 

structure and finite state HAA for the formula. Since the number of new games 

is bounded it follows that one of them must be a perfect game and since a new 

game is played for every position it then follows that these games will either be 

perfect games or will, due to the depth-first nature in which the plays of the 

game are examined, be safe games since they reuse the results of the perfect 

games.

Figure 5.8: Unsafe new game.

Unfortunately, when we postpone new games, it can happen that during 

some new game a result from a position for which we are postponing a new game 

is reused. An example of this is shown in Figure 5.8 (with the depth-first order 

in which the positions are reached during the game shown in parentheses4), 

where a new game is played from position Yi, but not from position X 2 since 

this position is on the current play of the previous game (shown as Xq) . However 

on another (later) play from Yi the position X 5 is revisited and the result from 

the store (of the new game from Y\) is reused. The new game from Y\ is 

therefore not a safe game. (Note, the new game from Y\ would have been safe 

if we had previously played a new game from X2 .) Let us refer to new games 

where results from positions from which we are postponing a new game are

4In the text we will show the depth-first order for the positions as subscripts. Note therefore 
that positions X q, X ?  and X $  all refer to the same position X  with the subscript indicating 
when it is reached during the games (similarly Yi and I 3 ),
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reused as semi-safe games.

In order to show correctness of the nonemptiness game we therefore need to 

show that the result of a semi-safe game is correct. We will use Figure 5.8 to 

illustrate our arguments. Firstly, note that if only correct results are reused in 

the semi-safe game then of course the semi-safe game’s result must be correct as 

well. Hence, the interesting case is when we assume an incorrect result is reused. 

Let us therefore assume the stored result for position X 2 is currently incorrect. 

This would mean there is some play from Y\ that would give the correct result, 

but this play was not examined from X 2 since it got truncated when we found 

I 3 on the current play. Let us assume this elusive play has a position W  on it 

from which the correct result can be obtained. In Figure 5.8 the position W  is 

shown on the same play as position X 5 for which the incorrect result is reused; 

this need not be the case since it could be on any play from Y\ (if it is not on 

the same play, however, reusing the result from X 2 cannot influence the result 

from W  and is therefore an uninteresting case). Note however it cannot be on 

a play “after” position A 5 , since this would have meant, from the depth-first 

nature of the games, that we would have already examined this position on the 

left-hand play after X 2 and hence got the correct result for position X 2. Now 

let us assume reusing the result for position X 2 on a play from W  causes the 

result for W  to be incorrect. Note, only one play from W  is sufficient since it 

is this play that causes the incorrect result to be obtained. If position W  is not 

011 the current play of any previous game, then a new game will be played from 

W. Since all new games cannot be semi-safe (again due to the And-Or Tree 

having a finite number of positions), we can assume the new game from W  is a 

safe game. This then implies that the reuse of the incorrect result for position 

X 5 cannot influence the result of the new game from Yi.

The last scenario to consider is the case where W  is on a previous play 

and therefore the new game from W  is postponed. It is not difficult to see 

that if a correct result can be obtained from W, but the only play from W
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reaches position X 5 , then the play we are missing is one that infinitely often 

visits position W> Furthermore, since we assumed from W  we can obtain the 

correct result, but from X 2 (that is part of an infinite play) we cannot obtain 

the correct result, it means W  must be in the acceptance condition (i.e. in 

set G or B). This is precisely why there is an exception to the rule of when to 

postpone a new game (see section 5.2.2). Since W  is in G or B we therefore do 

not postpone a new game from W  and this new game will obtain the correct 

result and hence reusing the incorrect result from X 2 cannot influence the result 

of the semi-safe game from Y\.

Although we have only given an informal argument to support the correct

ness of our algorithm, we believe by using the simple notions of perfect, safe and 

semi-safe games the main points of interest are highlighted succinctly. Next we 

consider the complexity of the algorithm.

5.4 Complexity

Let the number of positions in the product HAA K  x A d i¥> be n. Since a 

new game is required for each position and in the worst case each of the n 

positions needs to be visited for each new game the time complexity of the 

nonemptiness game is 0 (n 2). However, due to the depth-first nature of the 

nonemptiness games and the fact that the original results store is checked for 

winning positions during a new game, new games tend only to traverse all n 

positions the first time the game is played and subsequently the results store 

provides the results. The time complexity of the nonemptiness game is therefore 

O(cn), where c < n  and c is the number of new games that will not immediately 

find a winning position from the results store. In fact there is a relationship 

between c and the number of strongly connected components in the Kripke 

structure (and the product automaton therefore): for each SCC in K  x A d ,<p a 

new game might be required that will visit at most all the positions in the SCC.
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An example of this is the new game in Figure 5 .6 : the new game from (z, q\) 

visits the positions (y,gi), (k,q\) and (k,q\) (which are all part of the

same SCC), but the other new games only visit at most all their immediate 

successor positions.

The space complexity of the nonemptiness game is the amount of space 

requiied for the stack plus the space required for each of the games’ results 

stores. The space requirement for one results store is linear in the number of 

positions n, and since we can reuse the space when a game is finished the space 

complexity is 0 {k +  n), where k is the space required for the stack (in general 

f e « n )

5.5 Related Work

The version of the algorithm presented in Figure 5.7 that does not store w i n n in g  

positions (removing lines 11-15 and 20-21) is the game theoretic counterpart of 

the algorithm for nonemptiness checking of HAA described in [Ber95]. There 

it is shown that this algorithm is space efficient, 0 (m x log^n) (where m  is the 

number of Si sets in the HAA), but it is not time efficient. In fact, empirical 

results from our system and others (notably Holzmann’s experience with the 

SPIN system) indicate the exponential time complexity of this algorithm is 

realised on even relatively small examples. In our case we checked whether it 

is possible to reach the initial state from any state (AGEF init) of a hand- 

coded model of the Address Interface of the AMULET asynchronous micro 

processor (described in [VBF+97] and section 7.3.1). This model contains only 

32 unique states5, but without storing winning positions 2402 positions were 

visited during the nonemptiness game (as opposed to 5 9  when a results store 

was used). Also in [Ber95] it is shown that the nonemptiness check for HAA

5The version of the address interface in section 7.3.1 is more complex (274 states) than the 
hand-coded version in [VBF+97] (32 states).
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can be done in linear time (0(n)), but it requires the complete HAA to be kept 

in memory. The nonemptiness game, on the other hand, can label positions as 

winning without traversing the complete HAA.

The CTL* model checker of Bhat et al. [BCG95] is different from the one 

described here in two fundamental aspects: they traverse the state space based 

on the syntactic structure of the CTL* formula to be checked, and secondly, they 

construct SCCs (strongly connected components) in the state graph (product 

of the formula and Kripke structure) to determine the validity of formulas. As 

was pointed out in section 3.6.2 the automata approach does not suffer from 

the disadvantage that equivalent formulas might have model checking runs of 

different size. Furthermore, the automaton translated from a formula can in 

some cases be more succinct, for example, the formula E(Gp  V pUq) can be 

translated to an HAA with a single state6. Building SCCs in memory during 

model checking has the disadvantage that for certain systems the whole state 

space might be in an SCC and in these cases the algorithm will suffer from 

the state explosion problem. The nonemptiness game does not suffer from this, 

since instead of building SCCs, a new game is played to determine a winning 

position for a player. For example in Figure 5.4 a new game is played to 

determine whether (z,q i) is a winning position for P o rt instead of building the 

SCC (z,qi), (x,qi), (y,qi), (k,qi) to determine that (z,qi) can reach t r u e  and 

is therefore a winning position for Port.

The nested depth-first search, described in section 3.5.3, used for doing 

nonemptiness checking of Biichi automata can be seen as a specialisation of the 

nonemptiness game described here. Whereas in the nonemptiness game a new 

game is played when backtracking from any position, in the nested depth-first 

search a second search is only started from an accepting state (state in the set 

F). Changing line 11 of the algorithm in Figure 5.7 so as to restrict the play

6Tlie HAA contains the states tru e and false, but these are not counted since in the 
nonemptiness game they are trivial winning positions for Port and Brandy respectively and 
hence will not be expanded in the game.
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of a new game to only states either in G or B will therefore be precisely the 

nonemptiness game equivalent of the nested depth-first search.

The work of Stevens and Stirling [SS98] is the most closely related to the 

algorithm described here. They use two-player games as the basis for a model 

checking algorithm for the /i-calculus. Since the ^-calculus is more expressive 

than CTL* their algorithm is more complex than ours. Specifically, they require 

indexes to keep track of the unwinding of fixed point variables, which is not 

required here. Another key difference is that instead of only recording winning 

positions that are definitely valid, they use decisions that represent a winning 

move for a player from a position under some assumptions. If there are no 

assumptions for a specific decision then the move will definitely lead to a win 

for the specific player and can always be taken. This is therefore equivalent 

to our results store. If however a decision is based on some assumptions that 

might not be valid, the game needs to be replayed from that position to ensure 

a win for the right player. In fact, a stack of possible decisions is kept at every 

position in a play, with the decision at the top of the stack being the “best” 

decision. The reason for the stack of decisions is that during a play it might 

occur that the assumption on which the best decision is based might be found 

to be invalid in which case the decision need to be discarded and the second 

best decision will be promoted. This approach is less memory efficient than 

ours, but can be more time efficient since not all the results stored in our game 

will be reused.

It is worth noting that the work presented in this thesis was developed 

completely independently and concurrently with that in [SS98].
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5.6 Concluding Remarks

In the current implementation of our model checker, the system produces an 

error-trail to indicate to the user why the property failed for the reactive system 

under investigation. An error-trail is nothing more than a winning play for 

Brandy and is as such easy to produce. In [SS98], however, it is conjectured 

that an error-trail is not as useful to the user, since the user might rather 

want to have some indication why a specific play (execution sequence) is not a 

winning play for player. Clearly both these options could be useful to a user 

trying to understand the behaviour of a system. In [SS98] the user can play a 

game (and lose!) against the winning strategy for the model checking game, in 

order to get better insight into why the property holds, or otherwise. Since, in 

the algorithm presented here, a winning strategy for a player is available from 

the results in the results store, it would be a simple extension to allow a similar 

approach.

We have already shown that the nonemptiness game for nondeterministic 

Buchi automata is a specialisation of the nonemptiness game for HAA, and as 

such indicates how LTL model checking can be done more efficiently. In the 

next chapter we consider restrictions to allow efficient CTL model checking as 

well. Moreover, it is shown that the structure of the HAA for the CTL* formula 

can be used to determine the type of restriction that is required.
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O ptim ised N onem ptiness  

Gam es

Here we investigate different forms of the nonemptiness game based on different 

forms of HAA. Specifically, the structure of the HAA when dealing with CTL 

and LTL formulas will be analysed to see how more efficient nonemptiness 

games can be played for these automata.

It will be argued that the number of new games required during the nonempti

ness game is a measure for comparing the complexity of CTL and LTL model 

checking in our games based automata-theoretic setting. Of course it is well- 

known that the model checking complexity of LTL is higher than tha t for CTL 

in general, since both are linear in the size of the Kripke structure but LTL is 

exponential in the size of the formula, whereas CTL is linear. These complexity 

results were however achieved in different settings: LTL in a local and automata 

setting and CTL in a global and structural setting. Here we compare them using 

the nonemptiness game setting, which is local and automata based.

An efficient nonemptiness game for HAA will need to exploit any special

112
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structure of the HAA. In order to achieve this we show that it possible to deter

mine from the structure of an HAA whether the formula that it was translated 

from is a CTL, LTL, both CTL and LTL, or strictly a CTL* formula.

6.1 LTL Nonem ptiness Games

Here we are interested in CTL* formulas of the form A ip and B <p where p  

contains no state-subformulas (call them linear time formulas).

Prom section 4.5 we know that the HAA obtained from formulas of the 

form Ep  only contain V-choices and those for Ap  only contains A-choices. The 

nonemptiness games for linear time formulas can therefore be considered to be 

boring games for one of the two players, since either all the moves will be made 

by P o rt (for E p  formulas) or by Brandy (for A p  formulas). Furthermore, when 

P o rt makes all the moves the acceptance condition is (G , 0) and when Brandy 

makes all the moves it is (0,-B) (section 4.5). Therefore from the winning 

conditions in the nonemptiness game given in Figure 5.1, if P o rt (Brandy) 

moves and G (B) is empty then any position on the current play that is revisited 

means a win for Brandy (Port).

9 < % M > & )

90 A £=o (c ’ 9 i ) A E o (c>9o)

9i A ^ o W ) h c Z o ( c^ o )

Figure 6.1: A D}AFGp =  ({{p}, {->p}}, L>, {g0, 9i}, <5, q0, ({}, {tfi}))

However, if G (or B)  is not empty then the fact that the Si set is not 

necessarily singleton means some of the positions in the set can now be in G 

(B) and other positions not in G (B ). For example the HAA translated from 

the formula AFGp (Figure 6.1) has an Si set containing two states (qo and q{) 

of which only one (qi) is in the B set. When a nonemptiness game, without
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any new games, are played for an automaton of the above form, the use of a 

results store might cause a cycle through a position in G (B) to be missed and 

consequently a winning position can be labelled incorrectly. A new game is 

thus required to find a cycle through positions that are either in B or G. This, 

combined with the fact that only one player moves in a game and that cycles 

in a play, where no position is in G (B ) are trivially labelled, allows us to make 

the following optimised rule for linear time nonemptiness games:

• During the nonemptiness game for K  x A d }V where ip is a linear time 

formula, new games need only be played from positions that are either in 

G or B.

This is the same rule that is used in the nested depth-first search used in the 

SPIN model checker [HPY96] (see also section 3.5.3). Here we have presented 

a justification for this rule in the setting of the nonemptiness game. Note that 

an LTL nonemptiness game is a semi-safe game (section 5.3), since incorrect 

results can be reused from positions that are not in G or B (since no new games 

are played for these positions).

6.2 CTL Nonemptiness Games

In section 4.4 it was shown that CTL formulas can be translated to 1-HAA 

(HAA with singleton Si sets). Hence, unlike in the linear time case, the in

troduction of a results store cannot cause a position in G (B) to be labelled 

incorrectly as a win for the wrong player. Intuitively, when a cycle in a play is 

found during a CTL nonemptiness game if all the positions in in fpos  are in G 

then P o rt wins the play (vice versa for B and Brandy); if one of these positions 

in infpos  is revisited in a later play then the result in the store can be reused 

since the new play will also have a cycle through the positions in in fpos  (this 

is not necessarily true in the linear time case). This would seem to indicate
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must be played for all positions visited during the nonemptiness game.

In the CTL nonemptiness game it is unnecessary to play new games for 

positions in the initial Si set. The reason is that if we consider the positions 

in lower Si sets already to be labelled then the boolean transition function for 

the states in the initial set reduces to only referring to positions from itself. 

Therefore, it can be considered to be a one-player set and no new games are 

required for these positions regardless whether the positions are in G or B. For 

example in the 1-HAA for A G E F p , positions with a qo component are in the 

initial SqQ set and therefore no new games will be played for these positions.

CTL nonemptiness games are safe games (section 5.3), since the results from 

positions for which no new games are played cannot be incorrect (as is possible 

in the LTL case) and can therefore be safely reused.

6.3 LTL vs. CTL Nonemptiness Games

Q $(q> M>&) 5{q>{p>Q}>k )
Qo A c ^ M i ) A £ o f c » ) true true
Ql A c = 0  (C5 ^ i ) A  S f e 9 l ) true true

Figure 6.3: A D^ GpyFq  ̂ — (2 ^ ’̂ ,L>, ({}> {qi}))

Although in the LTL case all states in the HAA can be considered part of 

the same Si set, splitting this set into singular sets where possible can allow 

more efficient nonemptiness games. In the CTL case we saw that for 1-HAA, 

when positions from one of the Si sets are in G or B then no new games are 

required for these positions. Therefore, in the LTL case if the Si set of the HAA 

is divided into smaller Si sets and it is found that all the positions in G (B) 

are in singleton Si sets then no new games are required. For example, consider 

the HAA for the formula A{Gp V Fq) given in Figure 6.3. If we consider both
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<2 % , M A )
20 V L o (c ,9 i)A A to (c ,?o ) A JSfeflb )
Qi V t o W ) true

Figure 6.2: HAA A D ] A g e f p  ~  ({{-■£}, {p}}> A  {qQ, gi}, <5, go, ({}, {}))

that new games need only be played from positions that are neither in G nor 

B. This rule is however too weak.

In the linear time case we have seen that all the moves in a game are made 

by the same player. Let us now define Si sets with all the transitions either 

consisting of only V-choices or only A-choices to be one-player sets. Similarly, a 

set with transitions consisting of both V-choices and A-choices is called a two- 

player set. In the linear time nonemptiness game all the Si sets are therefore 

one-player sets. In the 1-HAA for the CTL formula AGEFp,  given in Figure 6.2, 

the set Sqo (i.e. Si set containing go) is a two-player set, whereas the set S qi 

(i.e. Si set containing q\) is a one-player set. From the linear time case we 

know that for a one-player set no new games are required if the positions in the 

set are not in G nor B. This leads to the following stronger rule:

• During the nonemptiness game for K  x A jj^  where <p is a CTL formula, 

new games need only be played from positions that are neither in G nor 

in B but are referred to in the transition function of a two-player set.

In fact this rule can further be strengthened by observing that positions 

in transient Si sets have trivial new games since all these positions lead to 

positions in lower Si (in the partial order on the Si sets) that would, because 

of the depth-first nature of the games, already be labelled as winning for one 

of the players. Therefore, positions in transient sets don’t require new games 

(note that positions in transient sets cannot be in G or B). Again considering 

the 1-HAA for A G E F p  (Figure 6.2), both Si sets of the automaton are referred 

to in the transition function of the two-player set and therefore new games
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must be played for all positions visited during the nonemptiness game.

In the CTL nonemptiness game it is unnecessary to play new games for 

positions in the initial Si set. The reason is that if we consider the positions 

in lower Si sets already to be labelled then the boolean transition function for 

the states in the initial set reduces to only referring to positions from itself. 

Therefore, it can be considered to be a one-player set and no new games are 

required for these positions regardless whether the positions are in G or B. For 

example in the 1-HAA for A G E F p} positions with a go component are in the 

initial Sqo set and therefore no new games will be played for these positions.

CTL nonemptiness games are safe games (section 5.3), since the results from 

positions for which no new games are played cannot be incorrect (as is possible 

in the LTL case) and can therefore be safely reused.

6.3 LTL vs. CTL Nonemptiness Games

Q
Qo A c= o(g  Qi) A c= o(G 9o) true true
Qi A S M i ) A c= o(g  91 j true true

Figure 6.3: A DiA(GpVFq) = (2{p,<7A A {9o,9i},^,go, ({},{9i}))

Although in the LTL case all states in the HAA can be considered part of 

the same Si set, splitting this set into singular sets where possible can allow 

more efficient nonemptiness games. In the CTL case we saw that for 1-HAA, 

when positions from one of the Si sets are in G or B then no new games are 

required for these positions. Therefore, in the LTL case if the Si set of the HAA 

is divided into smaller Si sets and it is found that all the positions in G (B) 

are in singleton Si sets then no new games are required. For example, consider 

the HAA for the formula A(Gp  V Fq) given in Figure 6.3. If we consider both
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states of the HAA to be in the same Sj set then new games must be played 

for positions with a qi component since these positions are in B. Whereas if we 

consider the HAA to have two Si sets then it is clear that no new games are 

required.

LTL CTL
1 For all states in HAA,

set NewGame flag to false.
2 Construct minimal Si sets.
3 For all states in G (B) and 

not in a singleton set,
set NewGame true.

1 For all states in HAA,
set NewGame flag to false.

2 Si sets are singleton (i.e. minimat).
3 For all states not in G or B and referred 

to in the transition function of a 
two-player set, set NewGame true.

4 Set NewGame for initial state to false.

Table 6.1: New game rules in nonemptiness Game for CTL and LTL

The different rules for determining when to play new games in the CTL and 

LTL environments are summarised in Table 6.1. First, the HAA for the CTL 

or LTL formula is built and then analysed according to the rules in Table 6.1. 

After completing the analysis each state in the HAA will have its NewGame 

flag either set to true or false. When the product with the Kripke structure 

is taken the product state’s NewGame flag will be copied from the states of 

the HAA for the formula. New games are only played when a position has its 

NewGame flag set to true, hence line 11 of the algorithm in Figure 5.7

if NotPlayedBefore(s) {

now becomes

if (NotPlayedBefore(s) & (s->NewGame)) {

In the next section we compare the complexity of the CTL and LTL nonempti

ness games.
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6 .3 .1  P ra c tica l C onsideration s: LTL vs. C TL N o n e m p tin e ss  

G am es

In section 5.4 we showed the complexity of the general nonemptiness game 

is dependent on the number of SCCs in the Kripke structure to be checked. 

This result is however based on the assumption that we play new games for 

all positions in the game. In the previous section we have shown that when 

considering HAA translated from LTL and CTL formulas then we can restrict 

the number of positions from which new games are required. If we therefore 

consider the Kripke structure to be fixed, we can compare the complexity of 

LTL and CTL nonemptiness games by considering the number of new games 

required in each case (i.e. the number of states in the HAA translated from the 

formula with its NewGame flag set to true).

In the translation of CTL formulas to 1-HAA a new state (and Si set) is 

created for every state-subformula in the CTL formula, hence the number of AV, 

EU, AW and ER subformulas in a formula is an upper bound on the number of 

positions with their NewGame flag set to true. These subformulas translate to 

states in the 1-HAA that are neither in G nor B. Whereas in the LTL case new 

games are only required when an Si set exists with more than one state and 

at least one in either G or B. We have already shown the relationship between 

LTL games and the nested depth-first search used for nonemptiness checking of 

Biichi automata; in [GH93] it is shown that for the nested depth-first search it 

is only necessary to distinguish between the states visited in the first search and 

the second (nested) search and the states need not be deleted after completing 

the nested search. If we recast this result in the LTL nonemptiness game it 

shows that only one new game will be required and all positions in the product 

HAA will at most be visited twice (once in the initial game and once in the 

new game). In the CTL nonemptiness game the number of new games depends 

on the formula being checked and can therefore not be bounded in this fashion.
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Therefore, if we assume the HAA for CTL and LTL are of similar size, the LTL 

nonemptiness games are in general more efficient than the CTL games, since 

fewer new games are required.

In the next section we consider how this result influences the model checking 

complexity of CTL and LTL in our nonemptiness game setting.

6 .3 .2  P ra c tica l C onsideration s: LTL vs. C TL M o d el C heck in g

In [LP85] it is argued that when analysing the complexity of model checking 

the size of the Kripke structure is more important than the size of the input 

formula, since the size of the input formula is much smaller than the Kripke 

structure in practice. This argument supports our claim that the complexity of 

the nonemptiness game, which is based on the size and structure of the product 

automaton K  x A d)V,, can also be used to determine model checking complexity. 

Previously the exponential blow-up in the size of A p ^  for an LTL formula ip, 

has led to the belief that LTL model checking is more complex than CTL model 

checking. However, in our experience the exponential blow-up seldom occurs 

in practice. Furthermore, even when the blow-up occurs, it tends to be small, 

since the LTL formulas used to specify properties tend to be small (seldom more 

than 5 path operators).

Therefore, if we argue that the size of the HAA for the formula, A d^ ,  

will not greatly influence the size of the product automaton, K  x Aj)jip, then 

the complexity of the nonemptiness game can be considered also as the model 

checking complexity. From the previous section we know that if we fix the 

Kripke structure then LTL nonemptiness checking is in general easier than CTL 

nonemptiness checking, and hence, LTL model checking is in general easier than 

CTL model checking in our nonemptiness game setting.

One might argue that this result is not significant, since the nonemptiness
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game is a very specific setting and cannot reflect on the general result that 

LTL model checking is more complex than CTL model checking. However, it is 

similar to the algorithm (nested depth-first search) used in the best-known LTL 

model checker, SPIN. Furthermore, the model checking complexity for CTL is 

achieved in a setting where the complete Kripke structure must be kept in 

memory throughout the procedure, which is often impossible due to the state- 

explosion problem. In the CTL nonemptiness game the Kripke structure can 

be built on-the-fly and in some cases only part of it needs to be explored to 

determine a winning position.

6.4 CTL* Nonemptiness Games

The rules for CTL and LTL nonemptiness games can be applied by first analysing 

the syntax of the formula to be checked to see whether it is a CTL or LTL for

mula. If however, after analysing the syntax, the formula is found to be neither 

CTL nor LTL, it must be a CTL* formula and the (unoptimised) nonemptiness 

game of section 5.2.3 must be played. However, a more efficient approach would 

be to apply the CTL and LTL rules where applicable. For example the CTL* 

formula AFGp  A AG EFq  can be checked by applying CTL rules to the states 

of the HAA for AG EFq  and LTL rules for the states of the HAA for AFGp. 

In order to achieve this, rules for the nonemptiness game must be based on the 

structure of the HAA and not on the syntax of the formula to be checked.

From the rules for CTL and LTL games it is clear that the characteristics 

of the Si sets of the HAA can be exploited during the games. The following 

three characteristics of each Si set have been used so far:

one-player: Is it a one-player or two-player set? 

sing le ton  : Is it a singleton set?
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accep ting  : Is there at least one state from the set in G or B?

It is easy to see that these three features can be used to uniquely classify all 

possible Si sets of an HAA that is translated from a CTL* formula. In the 

CTL case only singleton was used, whereas for LTL the definitive feature was 

one-player.

one-player accepting singleton Action
1 yes no yes CTL and LTL: no new games
2 yes no no LTL: no new games
3 yes yes yes CTL and LTL: no new games
4 yes yes no LTL (rule 3): new games
5 no no yes CTL (rule 3): new games
6 no no no Not covered
7 no yes yes CTL: no new games
8 no yes no Not covered

Table 6.2: Classification of Si sets for CTL* games.

In Table 6.2 all 8 possibilities for the Si sets of an HAA for a CTL* formula 

are listed together with the rule (CTL and/or LTL) that applies and whether 

new games are required. Interestingly, only two possibilities are not already 

covered by the rules for CTL and LTL. Both of these are when a two-player set 

is encountered, but the set is not singleton. Let us assume that we can use the 

following translation procedure to obtain an HAA for a CTL* formula:

1. If the CTL* formula (p that is translated to an HAA is syntactically a 

CTL formula then the linear translation of section 4.4 is used.

2. If <p is syntactically an LTL formula then the translation via a nondeter- 

ministic Buchi automaton is used (section 4.5).

3. If <p is a CTL* formula (i.e. neither LTL or CTL) then the translation of 

section 4.6 is used, and for any subformulas that are either CTL or LTL 

the above rules (1,2) are used.
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In fact, this translation procedure is the one used within the implementation 

of our CTL* model checker. Furthermore, it allows the classification of the two 

outstanding cases in Table 6.2. From the translation procedure it follows that 

neither of the (outstanding) cases can be obtained from an LTL formula, since 

this would mean the Si set must be a one-player set. Neither can the Si set be 

from a CTL formula, since this would mean it must be a singleton set. Hence 

it can only be translated from a strictly CTL* formula. Of course, neither can 

it be a transient set, since transient sets are always singleton. This leaves only 

two possibilities: either it is translated from a (non-CTL) formula nested within 

a CTL formula, or, from a (non-LTL) formula nested within an LTL formula. 

But it cannot be from a formula nested within a CTL formula since this would 

mean the set would be a singleton set (rules 3 and 1). Hence the only remaining 

option is for the two cases to be related to a (non-LTL) formula nested within 

an LTL formula. The HAA for the formula AFG(EFp) given in section 4.6 is 

an example where the Si set containing the states q0 and q1 is classified by case 

8.

If the nested formula was a proposition then the S\ set would have been 

a one-player set (since it would have been translated from an LTL formula). 

Therefore, if during the game for a position in a set of case 6 or 8 the positions 

of the lower Si set are labelled first then the set would become a one-player set. 

If we therefore make the rule that whenever a choice exists for a player’s next 

move he/she always chooses a position from a lower Si set when possible then 

case 6 would reduce to case 2 and case 8 to case 4. A similar argument is used 

for playing no new games for the positions in the initial set of an HAA for CTL 

formulas in section 6.2. Note that this rule is implemented in the algorithm 

for playing the nonemptiness game given in section 5.2.3 (see description of the 

CreateExpr function).

In Table 6.3 the rules for setting the value of the NewGame flag for the 

states of the HAA for a CTL* formula are given. Implementing the rules is
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CTL*
1 For all states in HAA set NewGame flag to false.
2 Construct minimal Si sets.
3 For all states in G (B) and not in a singleton set, set NewGame true.
4 For all states not in G or B and referred to in the transition function

of a two-player set, set NewGame true.
5 If the initial state is in a singleton set, set NewGame false.

Table 6.3: New game rules for CTL* nonemptiness games.

straightforward, since it is easy to determine whether an Si set is singleton and 

whether it is a one-player set. At most two passes through all the states in 

the HAA are required: one to label the Si sets as (not) singleton and (not) 

one-player, and another pass to do the analysis for rules 3 and 4. Rule 5 is an 

additional rule from the CTL case, where the initial set does not require new 

games, and is a simple test after completing the analysis for rule 3 and 4.

6.5 Classifying CTL* Formulas

An interesting question to be asked of a CTL* formula <p is whether there exists 

an equivalent CTL and/or LTL formula for (p. This question was addressed in 

[CD88] where a characterisation of those CTL* formulas that can be expressed 

in LTL was given. In the CTL case, however, they only showed when a CTL* 

formula cannot be expressed as a CTL formula. In both the LTL and CTL 

case, in order to characterise a formula, a Kripke structure must be provided 

by the user that will show certain properties of the formula, which therefore 

implies that their characterisation cannot easily be automated.

To the best of our knowledge, the complete characterisation of CTL formulas 

is still an open problem. Here we show that CTL formulas can be characterised 

by using 1-HA A.
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6 .5 .1  CTL* Form ulas E xp ressib le  as CTL

Q <%> {"'?},*0 <5(9. W . fc)
Qo A ^ M oJ a A ^ M i ) A S f e ® )
Qi Ac-d (c- <?i) true

Figure 6.4: A AGFp =  ({{p}, {->*)}}, D, { g 0 , qi}, 6 , g0 , ({}, {qi}))

In order to show how we will characterise CTL formulas we begin with a 

simple example of an LTL formula that has an equivalent CTL formula. In 

Figure 6.4 the HAA for the LTL formula AGFp is given. Note that this is a 

1-HAA with two Si sets: S qo (containing only state go) and Sqi (containing only 

state qi) and in the partial order we have S qi < Sqo. If we consider the state 

cji first and expand the boolean expressions in the transition table we get:

f c - i

qi =  (-.p A f \  (c, qi)) V (p A true)
c=0

that can be reduced to:

fc-l
Ql = p V  / \ ( c ,g i )

c=0

If we consider the translation rules for translating CTL formulas to 1-HAA 

(section 4.4) then this is in the form (q\ is in the B set):

f c - i

8(AFip,a, k) =  5(ip, a, k) V AFip)
c=0

where ip =  p. Therefore we have qi =  AFp. Now consider the expression for 

Qo'

f c - 1  f c - l  f c - l

g0 =  (-'P A (c, g0) A f \  (c, gi)) V (p A / \  (c, g0))
c=0 c=0 c—0

that can be reduced to:
f c - i  f c - i

g0 =  (p V / \  (c, gi)) A f \  (c, g0)
c = 0  c = 0



www.manaraa.com

CHAPTER 6. OPTIMISED NONEMPTINESS GAMES 125

However we know that AFp = (p V Ac=o (c> 9i)) and therefore we have:
fc-1

go =  AFp  A / \  (c, g0)
c=0

If we again consider the translation rules for CTL to 1-HAA (go is not in B or 

G) we get go =  AG AFp  Therefore, if we translated the CTL formula AGAFp 

to a 1-HAA we get the same 1-HAA as when we translate the LTL formula 

AGFp.

Theorem  3 A CTL* formula ip has an equivalent CTL formula iff there exists 

a 1 -HAA, Ad,<p, such that C{Av,<p) is the set of D-trees satisfying (p.

Proof: Firstly we need to show, if a CTL* formula <p has an equivalent CTL

formula 'if then there exists a 1-HAA A p ^ .  However, since <p and if are known 

to be equivalent and from section 4.4 it is known that for every CTL formula 

a 1-HAA can be constructed, the 1-HAA for if, A jj^ ,  proves the existence of 

such a 1-HAA automaton. This proves the first direction.

The second direction, namely, if a 1-HAA exists for a CTL* formula <p 

then it has an equivalent CTL formula, will now be shown to hold by giving 

a translation from 1-HAA to CTL formulas. Since, we know that the 1-HAA 

must have been translated from a CTL* formula, we know two characteristics 

of the automata (from section 4.6):

• From a state in the automaton all successor states in the input tree will 

be considered. In other words, at no point in the input tree will the 

automata distinguish between subtrees. For example if an input tree has 

k successors at a state then the transition function cannot be of the form: 

Vi=o(c> 9o) A V c = ) +  i(c> 9o), for some 0 <  j  < k -  1.

• The single state of an existential (universal) set cannot be in B (G).

The translation proceeds in a bottom-up fashion according to the partial 

order between the S{ sets of the 1-HAA: the first states to be translated to
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formulas are those that do not refer to states in lower Si sets. As soon as a state 

is translated to a CTL formula, all occurrences of that state in the transition 

functions of states of higher Si sets in the partial order are replaced with the 

formula. Note the formula (that replaced a state) is therefore considered to be 

just a proposition in the transition function where it replaced a translated state. 

This process of translating states that do not refer to states in lower Si sets and 

replacing their occurrences with formulas (propositions) is repeated until the 

initial state of the 1-HAA is translated to a formula. A state is translated to a 

formula when the boolean transition function for the state matches the right- 

hand side of the translation rules for the CTL formulas given in section 4.4.

All that is required now is to classify the positive Boolean formulas for the 

transition functions of the states of a 1-HAA.

First consider a transient set, i.e. a set that does not contain any reference 

to the state it contains. In these cases the boolean expression can only consist 

of atomic propositions or refer to states that are already labelled by formulas 

contained in lower Si sets.

In the case of existential or universal sets the boolean formulas first need 

to be rewritten in either conjunctive or disjunctive normal form. First we form 

an abstract formula, by abstracting the successor relation to only contain one 

successor for the single state in the Si set. For example the formula q V (p A 

V c=oM o)) becomes just q V {p A qo). This is required in order to rewrite 

the formulas into CNF or DNF. Note this is a safe reduction since we know 

the automaton cannot distinguish subtrees (see above). Furthermore, we also 

remember whether the reduction removed A or V-choices (in the example above 

it removed V-choices). The single state of the Si set that is also referred to in 

the boolean expression will be called the repeat state.

Let us consider the abstract formula to be rewritten in CNF. Some of the 

disjunctive terms will now contain the repeat state and some will not. Group
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all the terms that do not contain the repeat state together and replace it with 

a single new variable, call it Z. Note that the variables in Z  have already been 

labelled by formulas or contain propositions. The boolean expression now has 

the following form:

Z A X

where X  is in CNF with every disjunctive term containing a reference to the 

repeat state. If we call the repeat state go, then X  can be rewritten as Y  V 

go, where Y  contains no reference to go. Hence the boolean expression now 

becomes:

Z  A (Y V go) (6.1)

Similarly if we started by rewriting the formula in DNF the boolean expression 

will become:

Z V ( Y  A g0) (6.2)

Now, depending whether a A or V-choice was removed during the abstraction 

and whether the repeat state is in G, B or neither, the formula the boolean

expression translates to can uniquely be identified. The different cases are

summarised in Table 6.4.

Eq 6.1/ 6.2 A/V B/G /(N )either Formula
1 6.1 A B A (Y  R  Z)
2 6.1 A N A (Y  V  Z)
3 6.1 V G E (Y  V  Z)
4 6.1 V N E (Y  R  Z)
5 6.2 A B A (Y  U Z)
6 6.2 A N A (Y  W  Z)
7 6.2 V G E (Y  W  Z)
8 6.2 V N E (Y  U Z)

Table 6.4: Translation Rules for 1-HAA to CTL.

This concludes the proof. Note that if we did not use the R  and W  operators 

then rules 1, 4, 6 and 7 would no longer be available, and the translation would
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require to first translate to equation 6.1; see if it matches rules 2 or 3 and if not 

translate to equation 6.2 which will then allow a match with either rule 5 or 8. 

□

E xam ple: Consider the HAA for the CTL* (LTL) formula A{GF(-^p) V 

GFq) (formula for weak fairness) given in Figure 6.5.

s 5(s,$,k) £(s,{p},/c) 5(s,{g},/c)

So AS=o((<^o)
A ( c, s i ) )

A !5 )((c» s0) A (c, St)
A(c, s2) A (c, S 3 ))

Ac=0 (C1 s°) A«o1((=,»o)
A(c, S 3 ) )

Si A S ( f e « i ) ) A t o ( ( c>s i) A (c» ss) true true
S2 true Ae=d(c> s2) true true
S3 true Ac=o((c, s 2 j  A (c, S 3 ) ) true Ac=o(c>fi3)

Figure 6.5: Ao.WeakFair =  (2M , D ,  {s 0, si, s 2, s3}, S, s 0, ({}, {s2}))

Since the translation is done bottom-up, s2 is translated first.

fc-i
s2 ^  (->p A -iq) V (p A -ig A (c, s2)) V (-ip A q) V (p A q)

c=0
After abstracting the successors to one, k = 1, and simplifying the last two 

terms to q we get the following:

s2 =  (~ip A -»q) V (p A -iq A 5 2 ) V q 

— (("’P A “'?) V q) V {p A ~>q A s2)

This is now in the form Z  V (Y  A s2), with Z  — (-1p  A -ig) V q and Y  = p A -1 q. 

Since a A-choice was abstracted away and s2 is in B, this matches case 5 in 

Table 6.4 and therefore we have:

s2 =  A({p A -1 q) U ((->p A -ig) V q))

This can be further simplified to get s2 =  AF(-*p V q). The translations for si 

and S3 are similar, here we show a reduced version for S3:

S3 =  (-ijp A -ig) V (p A -«g A AF(-ip V g) A S3) V (->p A q) V (p A q A S3)
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=  ((~nP A -iq) V ( - 1p A q)) V (p A -\q A AF(->p V q) A S3 ) V (p A q A S3 ) 

=  i p V ( ( ( p A - > ? A  A F^-ip V q)) V (pA  #)) A S3)

This is now in the form Z  V (Y A S 3 ) ,  with Z  = -*p and Y  =  (p A -ig A AF(-ip V 

<?)) V (p A g). This matches case 6 (since S3 is in neither B nor G), and we have:

S3 =  A(((p A -ig A AF(->p V q)) V (pA q)) W  -ip)

This can be reduced to S3 =  A(AF(->p V q) W  -1p). Similarly we have s\ = 

A(AF(-ip  Vg) W  q). Lastly so needs to be translated:

so =  (~>p A -*q A so A A(AF(->p V q) W  q)) V

(p A -iq A so A j4.(j4.JP*(—vp V q) W  q) A AF(-ip V g) A i ( i l r (np V q) W  -ip)) V 

(-ip AgA so) V

(p A q A so A A(AF(-»p V q) W  -p))

=  ((-»p A -ig A A(AF(-ip V q) W  q)) V

(p A -ig A A (A F (^p  V q) W  q) A AF(->p Vg) A A(AF(-ip V q) W  -ip)) V

( ip  A q) V (p A q A A(AF(-ip V q) W  ~*p))) A So

This is of the form Z  A (fa lse  V sq) and therefore matches case 2, and after

reductions we get:

so =  AG(A(AF(-ip V q) W  q) A A(AF(-*p V q) W  -ip))

The LTL formula for weak fairness, A(GF(-ip) V GF(q)), therefore has an 

equivalent CTL formula, given by so above. Note that it is by no means an 

obvious translation from the LTL formula to the CTL formula. The translations 

from a CTL* formula to an HAA can however be automated as well as the 

translation from a 1-HAA to a CTL formula as described in Theorem 3. This 

provides a means to determine automatically whether a CTL* formula has a 

CTL equivalent and what it is:
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1. Translate the CTL* to an HAA.

2 . Check whether the HAA is a 1-HAA.

3. If yes, translate the 1-HAA back to CTL.

In our system the translation back to CTL is not automated yet, since 

a translation by hand gives more readable results. This is due to the user 

being able to reduce the size of the boolean expressions by using, sometimes 

non-obvious, equivalences, as was seen in the example above. Note that it is 

possible to translate a CTL formula into an HAA that is not a 1-HAA, but in 

those cases the HAA can always be transformed into one that is a 1-HAA. In 

our translation from CTL* formula to HAA, an efficient translation is made, 

that will always achieve the most succinct automaton, and therefore translates 

any HAA to a 1-HAA if one exists.

6 .5 .2  CTL* Form ulas E x p ressib le  as LTL

Unfortunately, the LTL case cannot be classified by taking the same approach 

as in the CTL case above. We might argue the following:

A CTL* formula ip has an equivalent LTL formula iff there exists only 

one-player Si sets in the HAA, Ao,tp, such that £(Av,<p) is the set of D-trees 

satisfying (p.

Clearly the first direction holds, since we can translate LTL formulas via 

nondeterministic Biichi automata, as described in section 4.5. The other direc

tion however does not hold. Essentially, an HAA with a single one-player set 

can easily be seen to be equivalent to a nondeterministic Biichi automaton, and 

nondeterministic Biichi automata are more expressive than LTL. For example 

the HAA in Figure 6 .6  has a single one-player set, but it is well known that no 

LTL formula can capture the property: “there exists a path on which p holds 

at all even moments” .
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Q IpW 0
<10 false V S f c m )
Qi V ^ f e ® ) V S f e ® )

Figure 6 .6 : A D>EvenM om ents = ({{p}» {^}}> D > {Q o, ?i}» <*) ffo» ({?ih  { } ))

However if we restrict the type of HAA we consider to be those that can 

be constructed from CTL* formulas then the above type of HAA cannot be 

generated. W ith this restriction it can be argued that when a CTL* formula is 

translated to an HAA with only one-player sets, then there must exist an LTL 

formula that is equivalent to the CTL* formula. Showing this to be true would 

require a translation from the HAA to the LTL formula in a similar fashion as 

the one used in the CTL case. Unfortunately, we are not aware of any such 

translation, and conjecture that it will be difficult to establish since there is an 

exponential increase in size when translating the other way (LTL to HAA with 

only one-player sets).

W ith the restriction that we only consider HAA translated from CTL* for

mulas we can recast the result from [CD8 8 ] into the HAA setting. There it was 

shown that a CTL* formula can be expressed in LTL i f f  the formula is equiv

alent to the formula where all path quantifiers are removed and a single A is 

put at the front1. For example if AG AFp is equivalent to AGFp (remove both 

A’s to get GF and then add one A to the front to get AGFp), then AGAFp has 

an LTL equivalent. The formula for which all the path quantifiers are removed 

is called ij)d. Therefore if the CTL* formula is of the form AiJj then it must be 

equivalent to A a n d ,  similarly for E 'ip and Eipd. Clearly, the formulas Aipd 

and Eij}d will be translated to HAA with one-player sets. Therefore if the orig

inal formula can be translated to an HAA containing a two-player set the two 

formulas cannot be equivalent. If both the HAA for A ip (Pip) and Aijff (E ipd)

1Only formulas of the form Atp are considered to be LTL. Here the same can be done with 
placing an E in front in the case where the original formula was of the form Eip.
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only contain one-player sets we need to show that they accept the same input 

tree (or input word in this case, since they consist only of one-player sets). For 

the Aip case this can be shown by

T (A aip x Aj^^d) = £ (A Alp x Aj^^d') =  0

where A is the HAA for the formula A ip and A is its negation, and, 

similarly A A^d and A A^d are the HAA for Aipd and its negation. The same can 

be done in the E 'ip case.

q {*>}>&)
qo A to1 (g qo) A c = o M o ) V A S M l)
qi V c-o U ^ l) false

Figure 6.7: A D ia f a g p =  ( { M ,  {q0, ?i}, qo, ({}, {q o } ) )

E xam ple: Consider the HAA for the CTL formula AFAGp given in Fig

ure 6.7. This HAA contains a two-player set and hence cannot be expressed 

in LTL. The same result is also shown in [CD8 8 ], where a Kripke structure is 

found for which AFAGp is false in the initial state, but AFGp is true.

6.5 .3  A p p lica tio n s

The results of the previous two sections can be applied in many different ways. 

For example they can be used to identify the difference in expressive power of 

CTL and LTL. In Chapter 2  different classes of properties to be checked were 

given in LTL format. How many of these can also be expressed in CTL? By 

checking whether the formulas can be translated to a 1-HAA we can answer 

this as follows:

Safety: AGp is a CTL formula.

G u aran tee : AFp  is a CTL formula
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O bligation : A (G pV F q)  can be translated to a 1-HAA (Figure 6.3) and is

therefore equivalent to a CTL formula.

R esponse: AGFp  can be translated to a 1-HAA (Figure 6.4) and is therefore 

equivalent to a CTL formula.

P ersis tence : AFGp  has no equivalent CTL formula, since it cannot be trans

lated to a 1-HAA (Figure 6 .1 ).

R eac tiv ity : A{GFp  V FGq) has no equivalent CTL formula since Persistence 

properties are a subclass.

U nco n d itio n a l F airness: AGFp  is the same as Response.

W eak Fairness: A{FGp  —> GFq) has a CTL equivalent, see Example in sec

tion 6.5.1.

S trong  Fairness: A{GFp GFq) is the same as Reactivity.

In the model checking community CTL model checkers have always been 

more popular than LTL model checkers, since the model checking complexity 

for CTL is lower than that for LTL. LTL is however more concise than CTL 

and is thus the favoured language to express properties of a system. The work 

presented here now allows this seeming anomaly to be overcome: a user can now 

express properties in LTL and when translations exist to CTL the translation 

can be done automatically and the formula used with a CTL model checker. 

Previous attempts to allow a more expressive logic than CTL, but retaining the 

CTL model checking complexity have focused on logics that can be translated 

into CTL: e.g. CTL2 [BG94] and LeftCTL* [Sch97]. For LeftCTL* it is the case 

that it is equivalent to CTL, but in the case of CTL2 it was shown tha t every 

formula can be translated to CTL, except formulas of the form E G fy i  U ^ 2)- 

For this formula a special extension to the traditional bottom-up model checker 

of Clarke et al. [CES8 6 ] is made that preserves the CTL model checking com

plexity.
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In section 6.1 and section 6.2 the rules for respectively playing the nonempti

ness games for LTL and CTL formulas are given. But what about formulas that 

are both CTL and LTL? The following theorem establishes an interesting result 

for this class of formulas.

T h eo rem  4 For all LTL formulas that have equivalent CTL formulas, no new 

games are required during the nonemptiness game.

P roof: Prom Theorem 3 if an LTL formula if has a CTL equivalent then the 

HAA for the formula if must be a 1-HAA. But from the rules for new games, the 

NewGame flag is only set for two-player sets of 1-HAA, and since the formula 

is LTL it can only have one-player sets. □

This is a significant result, since the nonemptiness game without new games 

can reuse previous results and can therefore be played by visiting every position 

in the game only once. It is also interesting to note that most of the properties 

we currently check of our asynchronous hardware designs fall into the class 

of formulas covered by Theorem 4 (see section 7.3.2). The model checking 

complexity for the sublogic of LTL for which Theorem 4 holds (call this sublogic 

CTLequiv) is however still exponential in the size of the formula, the same as full 

LTL. The reason is that formulas from CTLequiv can in some cases have CTL 

equivalent formulas of exponential size. An example is the CTLequiv formula 

E(Fp\  A Fp 2 A . . .  A Fpn), that has a CTL equivalent of size exponential in n.

In section 4.7 the logic Linear CTL* was introduced that can be translated 

linearly to an HAA. From the way LinearCTL* is constructed it follows that 

the HAA for these formulas will always be 1-HAA. Therefore, if we consider 

only the LTL formulas that are in LinearCTL* (call this logic LinearLTL) then 

we get a sublogic of LTL that allows model checking of linear complexity in 

both the size of the Kripke structure and the size of the formula. LinearLTL is 

however not the complete sublogic of LTL for which model checking is linear.
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For example, tlie obligation property A(Gp V Fq) is not in LinearLTL, but lias 

a linear sized CTL equivalent, A(p W  AF q ), and can therefore allow linear 

model checking according to Theorem 4. Finding more expressive sublogics of 

LTL for which model checking is linear is an interesting avenue for future work.

So far we have not considered the generation of the Kripke structure rep

resenting the reactive system to be checked. This is however an active area 

of research and many interesting techniques are being employed to generate as 

little as possible of the state space of a system, whilst still preserving the valid

ity of model checking results [CGL92, DGG93, Lon93, CGS95, BS93, CFJ93, 

ID93], Partial order rules [GKPP95, God90, GW91, GW93, HP94, Pel94, PL90, 

Val90, WW96] is one the most widely used of these techniques. Essentially, it 

avoids the generation of states due to the execution of interleavings of indepen

dent transitions in different concurrent processes of a reactive system. From 

[GKPP95] it is known that partial orders for branching time (CTL*) model 

checking are less efficient than those for LTL model checking, in the sense that 

the partial order rules would allow more of the state space of a system to be gen

erated during branching time model checking than during LTL model checking. 

Therefore, if a CTL* formula has an LTL equivalent then partial order rules for 

LTL can be employed rather than the less efficient rules for CTL*.

6.6 Concluding Remarks

In this chapter we have illustrated that CTL* model checking can be done in 

an efficient fashion by exploiting the theory of automata and games. However, 

in order for a model checker to be useful in practice, it is not only the model 

checking algorithm that must be efficient. In the next chapter we describe 

different approaches for implementing a results store as well as an efficient 

structure for a model checker based on the nonemptiness games and finally, as 

an example, show how to model check asynchronous hardware systems.
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Chapter 7

Im plem entation  Issues

In order to illustrate the model checking algorithm based on the nonemptiness 

game all the systems (to be checked) used so far have been small enough to 

be displayed as a state transition graph. In real-world examples systems are 

rarely simple enough to encode in this fashion. It is much more natural to de

scribe the reactive system to be model checked in some appropriate formalism 

from which the state transition graph (i.e. Kripke structure) can be obtained. 

For example using the protocol description language PROMELA [Hol91] to 

describe a communications protocol for model checking with the SPIN model 

checker [Hol92, Hol97c]. In section 7.3 it will be illustrated how the model 

checker described here is used for checking properties of asynchronous hard

ware systems. In the sequel our model checker will be referred to as AltMC  

(Alternating Automata based Model Checker).

A model checker takes two inputs: a description of a system and a property 

to be checked. We propose a modular design for a model checker such that 

minimal change is required when the description formalism is changed. In 

section 7.1 the design is described in the context of AltMC.

The size of the Kripke structure and hence the product automaton to be

136
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checked for nonemptiness is a major issue in determining the applicability of a 

model checker. Not only is the number of states in the automaton a limiting 

factor, but also the amount of storage required for a single state. In section 6.5.3 

it was mentioned that reducing the number of states is an active area of research. 

Here, however, we show two novel techniques for reducing the amount of storage 

required for the results store (section 7.2).

7.1 Structure of Model Checker

We mentioned above that the systems to be checked are usually represented as 

a high-level description formalism depending on the type of system. Besides 

PROMELA, other examples of high-level formalism used for model checking 

include:

ESM L: Imperative style language with complex data-structures for model 

checking operating system kernels [Vis93].

P e tr i  N ets: Used by the PEP model checker [GB96].

SM V: Used for describing synchronous hardware for the SMV OBDD based 

model checker [CMCHG96].

R ainbow : Language framework for describing asynchronous hardware to be 

model checked by AltMC [BFGW97, BFG+97].

At a low level, systems described in these high-level formalisms are repre

sented by a set of transition rules to evolve the current state to a set of next 

states. For example systems described in the languages above will be compiled 

into appropriate transition rules and when a new state is required in the Kripke 

structure the applicable rule(s) will be executed to generate the new state(s).

E xam ple: Consider the two process mutual exclusion system of section 2.2.1 

for which a reachability graph is given in Figure 7.1. Below we give a set
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of transition rules for this system in a guarded action notation: guard —> 

action, where the guard needs to be satisfied before the action can be ex

ecuted. The state of the system consists of the values of the control vari

able for processi, process2 and the semaphore variable and is described by 

{processi^process^ semaphore) . An asterisk (“*”) in the guard of a transition 

indicates that the field can hold any value for the guard to be satisfied in that 

state. The action part of the transition will indicate how each field is changed, 

with indicating unchanged fields. The start state is (Afi, IV2 , So) and the 

transitions are the following:

(■AM,*) -> ( T u ~  ~) (7.1)

-> (<?!,“  f t ) (7.2)

(Cl,*,*) ( A f i , - ,S 0) (7.3)

(*, Ar2,*) -► ( -  T2t~) (7.4)

(*j T 2 , 5o) -> ( -  C2, 5 i ) (7.5)

(*, C2 , *) ( - Ar2,5 0) (7.6)

By executing these rules from the initial state the state transition graph of 

Figure 7.1 is obtained.

N l N 2Sn

Figure 7.1: Reachability graph for the mutual exclusion system
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Our goal is to design a model checking system that can check systems de

scribed in different formalisms. In [BFG89] such a model checking system is 

described: different input programs are compiled and executed to generate 

their reachability graphs in a format that can be used as input by existing 

model checkers. Since the reachability graph is generated before model check

ing starts this is not an on-the-fly model checking system. A novel feature of the 

system is that a program written in any language can be checked, since it not 

only takes as input the program, but also a parser and operational semantics 

for the language the program is written in.

Here we are not interested in how the states of the reachability graph for a 

program (in our case, reactive system) are generated, but whether the states can 

be generated on-the-fly during the execution of AltMC. We therefore assume 

the existence of an Execution Unit that can generate a successor state from the 

current state by executing an appropriate transition rule. Part of the execution 

unit is therefore the set of transition rules for the formalism currently being 

used as input to the model checker.

In the automata-theoretic approach to model checking a product automaton 

is created from the automaton for the formula and the one representing the 

Kripke structure. This is a synchronous product: each state in the product 

automaton is created by making one move each in the formula automaton and 

the Kripke automaton. In the on-the-fly approach the states of the Kripke 

automaton are generated when required, by executing state transition rules, 

during the creation of the product automaton. Therefore, if the goal is to 

design a model checker that can use different input formalisms, it is better to 

separate the execution of transition rules from the moves in the automaton for 

the formula.

In Figure 7.2 the structure of AltMC is given. It consists of four distinct 

parts:
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Games Stale Generator Execution Unit
MovelnK Execute

F_state, K_state 
. Next Trans / K_state

tme, false
Backtrack StorageInStore

player, no 
AddStorer
InStackEvalProposition

true, false

Pop

F_state, K_state, Next Trans
Increment Game Counter

F_state, K_state, Player 
Game Counter

F_state

F_state, K_state, Next Trans 
Game Counter

Results Store

Stack

Decrement Game Counter

Figure 7.2: AltMC structure.

Games: This part contains the algorithm in Figure 5.7 and is the component 

driving the execution of the model checker. Its local variable is the state 

of the formula automaton (F_state). In order to know which boolean 

expression to expand from the transition table of the formula automaton, 

EvalProposition (that returns the truth-value of a proposition) must be 

called since the state of the Kripke structure is not known in this part of 

the model checker.

State Generator: This part can be seen as the interface between the formula 

automaton and the states of the Kripke structure. As its local variables it 

has the complete state of the product automaton (both the formula state 

and the Kripke structure’s state, K_state) as well as the set of transitions 

that can still be executed in the current state (Next Trans). Another 

task of this component is to interface with the storage structures, stack 

and results store. The dotted lines indicate relationships between inputs 

being received and outputs being sent within the State Generator.

Execution Unit: This part is where the code is executed to generate a new 

state from the current state in the Kripke structure. It contains no local 

variables, since the current state and the transition to be next executed
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are passed to it from the State Generator. Part of the transition rules 

is code to determine the truth-value of a proposition. When the Games 

component requires the value of a proposition it refers to it by an index, 

this index value is then used by the State Generator to determine which 

transition to execute to obtain the truth-value which is then passed back.

S torage: The results store and stack reside here. A stack entry consists of 

the state of the formula automaton, the state of the Kripke structure 

and the set of transitions still to be executed in the state of the Kripke 

structure. The entry in the results store consists of the state of the formula 

automaton, the state of the Kripke structure and the player for whom this 

is a winning position. Both the structures also contain the value of the 

Game counter that indicates which game is being played. When the Game 

counter is incremented, from the Games component, then a new stack and 

store are created. When it is decremented then these two structures are 

removed again. In the case of the stack this is achieved simply by using the 

same stack, and just changing the value of the game counter entries. The 

results store is implemented as a hash table and is partitioned according 

to the value of the counter to simplify the deletion of entries when the 

counter is decremented.

When the type of the system description language changes then at most the 

following components will be affected1.:

S ta te  G en era to r: K_state and Next Trans.

E xecu tio n  U n it: This component will be completely replaced by a different 

set of rules to execute.

S torage: The R estate components of the stack and results store will change,

as well as the Next Trans set in the stack entries.
1Note that in some cases the type of language can change, but the transition rules and 

state descriptions can be the same as before.
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W ith the exception of the execution unit, which might require major changes, 

the other components can easily be adapted to handle a new type of description 

language. As an illustration of the effectiveness of this structure for allowing 

different types of systems to be model checked, we changed the model checker 

to take descriptions of Rainbow designs (see section 7.3), rather than a state 

transition graph in less than one day. It must be noted that the transition rules 

for Rainbow designs already existed, since it was previously used as a basis for 

simulation.

It is interesting to note the different ways the two storage structures are 

used: the entries on the stack are both put onto the stack and taken off to 

be used again, but for the results store only the part relating to the winning 

player is retrieved. This indicates that the entries in the results store can be 

compacted. Since there are in general orders of magnitude more entries in the 

results store than on the stack, this will reduce the amount of memory required 

during model checking. Two compaction techniques are described in the next 

section.

7.2 Results Storage

The (product) state of the automaton can be represented by a vector of bits, 

called the state vector. In the nonemptiness game setting one bit is added to 

the state vector to indicate which player is winning from this position.

The representation of the results store has been the focus of much research 

[H0 I8 8 , GHP92, WL93, Gre96]. The most commonly used method is to repre

sent the set as a large hash table of states. When a new state is generated it 

is hashed to obtain the index into the table. Since the states must be stored 

in their entirety, to allow for comparisons during the resolving of possible hash 

conflicts, this method is not very efficient when a large number of states must



www.manaraa.com

CHAPTER 7. IMPLEMENTATION ISSUES 143

be stored. The most novel approach to date is the so-called bitstate hashing 

[H0 I8 8 ] used in the SPIN model checker. This technique requires a large vector 

of bits (of fixed size) to be maintained in memory to keep track of previously 

generated states. A hashing technique is used to compute an index into this bit 

vector from the value of each state. However, since the validation results can be 

invalid when a hash conflict occurs this technique is not always desirable when 

validating safety critical systems. The coverage obtained with bitstate hashing 

can be improved by either increasing the number of hashing functions used or 

using more than one bit to hash into (hashcompact [WL93]). A summary of 

bitstate hashing as well as comparisons with the hashcompact method can be 

found in [Hol95].

In the next two sections we propose two alternative techniques for repre

senting the results store. Firstly, we show how a graph encoding, using ordered 

binary decision diagrams, can be used to represent the information in the re

sults store and, secondly, we show how the state (vector) can be compressed 

without loss of information.

7 .2 .1  G raph  E n co d in g  w ith  an  O B D D

Appendix A gives an introduction to ordered binary decision diagrams (OB- 

DDs) and also forms the background to the work presented here. If the reader 

is unfamiliar with OBDDs it is suggested that Appendix A .l is read before 

proceeding.

If we consider a state, s, to be a vector of bits, s =  rco, aq, • * ■, x n then when 

a state is visited then it can be represented by the boolean function f ( s )  = 1, or, 

in other words, f ( x 0 , aq ,. . . ,  xn) = 1. For example, consider a state vector with 

only three bits, aq, aq and aq and a state is written as <  aqaqaq >■ Assume the 

following states are visited < 000 > , <  010 >  and < 100 >. Then the OBDD 

for the boolean function /(aq , aq, aq) =  a;rS2^ 3 + ^v^ 2'^3 + ^ r^ 2 ^ 3  will represent
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Figure 7.3: OBDD for function / ,  with variable ordering aq <  aq < x 3 .

the states visited. Thus if the variable ordering xi < X2 < X3 is assumed then 

the OBDD in Figure 7.3 represents the visited states for this example. To add a 

state, s, to the set of visited states it is therefore necessary to first convert s to 

its OBDD representation and then to perform an OR-operation on this OBDD 

and the one representing the set of states already visited. The resulting OBDD 

will represent the set of states with s added. To establish if a new state, s, is 

in the set of already visited states, the OBDD representing the visited states is 

traversed according to the values of the bits in s. For example, to check if the 

state s =< 010 >  is in the OBDD of Figure 7.3 we check if node X\ has a left 

arc (since x i = 0  in s) this arc is traversed to reach node £3 ; now since 0:3 =  0  

in s the left arc of £ 3  is traversed and the resulting terminal node T  is found 

indicating s is in the OBDD, If the existence of state s =< Oil >  was checked 

then at node £ 3  the right branch would have been taken leading to the terminal 

F  indicating s has not been visited yet. Only the following three operations 

are required to implement an OBDD state storage mechanism during on-the-fly 

model checking:

E ncodeO B D D  (s) This function takes as input a state and returns the OBDD 

encoding of the state.

O R (O B D D l,O B D D 2 ) Returns the OBDD that is obtained after applying 

the transformation rules (given in Appendix A) to the result of adding 

OBDD1 to OBDD2.
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E x is ts (O B D D l,s )  Returns true if state s is in 0BDD1 else false.

The advantage of using an OBDD to record visited states becomes apparent 

when large parts, or even, the complete reachable state space of a model are 

visited. Since this will in most cases cause the OBDD to become smaller, due 

to the applying of the transformation rules. For example consider the previous 

example where the states < 000 >, < 010 > and < 100 > were visited. If 

we now assume the rest of the reachable states of this example (the five states 

< 0 0 1  > ,<  0 1 1  >, <  1 0 1  > ,<  1 1 0  >  and <  1 1 1  >) are visited as well then the 

OBDD representing the visited states will only contain the terminal node T.

Exam ple

Consider again the two process mutual exclusion example, from sections 2.2.1 

with the transition rules given in section 7.1. The state of the system consists of 

the values of the control variable for processi, process2 and the semaphore vari

able and is described by (processi,process2 , semaphore).The two control vari

ables each have three possible values: Ni (0), Tj (1) or C{ (2). The semaphore 

has two values: 5'o (0) or Si (1). The two control variables will thus have two 

bits and the semaphore one bit allocated for it in the state vector (Figure 7.4).

State vector: 5 bits
Process 1 Process2 Semaphore

4,.3 2 . .1 0

Figure 7.4: A State Vector for the Mutual Exclusion System.

During initialisation the initial state (JVi, IV2 ,5b), which corresponds to the 

state vector <  00000 >, is inserted into the set of visited states. The next state 

to be visited is (Ti,lV2 , 5 b) (< 0 1 0 0 0  >) which is generated after executing 

transition 7.1. The OBDD resulting from adding this state to the initial state 

is shown on the left-hand of Figure 7.5. In the rest of Figure 7.5 the resulting
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<UXH)l>

Figure 7.5: OBDD representations for adding the first four states of the mutual 
exclusion system to the state store.

OBDDs are shown after adding the next three states visited in the depth-first 

search. The OBDD on the right therefore contains the states <  00000 >, 

<  01000 >, < 10001 > and < 00010 >. In Figure 7.6 the OBDD is shown after 

each of the remaining four states of this model is added to the set of visited 

states.

x,

After <(KK)10> After <01101>

Figure 7.6: OBDD representations after the last four states of the example are 
added. The rightmost one represents all eight reachable states of the system.

The memory requirement for this method is that of the largest OBDD gener

ated during the search. For this example it is the memory required to represent 

the second and third last OBDDs (see Figure 7.6) which both have 12 nodes 

(excluding the implicit F1-terminal). Considering that the largest OBDD for 

a boolean function with five variables is 14, this example performs close to 

the worst-case2. In general the OBDD representing the state store will have a

2If n  is the number of variables in a boolean function then there are 3 * 2 2 " — 2 nodes when 
n is even and 2 * ( 2 ^  — 1) nodes if n is odd in the largest possible OBDD for the function 
(excluding the implicit j F - terminal).
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best-case performance that is linear and a worst-case that is exponential in the 

number of bits in the state vector.

7.2 .2  S ta te  C om p ression

A system that has n bits in its state vector, seldom visits all 2n states. Find

ing ways of reducing the state vector size, without losing information, would 

therefore seem a worthwhile pursuit. Strangely, however, probabilistic methods 

[Hol95, WL93, SD95] are attracting more attention than safe reduction meth

ods [Vis93] in the research community. Probabilistic methods allow the state 

vector to be compressed in such a fashion that different states might have the 

same compressed state. During on-the-fly model checking this might cause a 

search to be truncated prematurely in which case certain parts of the state 

space might be ignored. Here a safe reduction method will be introduced that 

will reduce the memory requirements for a large class of models at the cost of 

an acceptable run-time overhead. The basic idea is to divide the state vector 

into parts and each part is then individually compressed with the aid of an 

indexed table recording all of the previous values that were assigned to the part 

(see Figure 7.7).

In general, consider the state vector, s, of length n  to be constructed of 

p  +  1 parts each of length n{ with i =  0 . . .  p. The parts might be the bits 

allocated to a process, a variable or even a byte boundary. For every part Si 

allocate a table ti with k{ entries. Let the compressed state, c, be of length m 

also consisting of p  +  1 parts each of length mi =  log2 ki. When a new state 

s  =  s q S i  . .  . s p  is generated take part S i  and check if these bits are in the table 

ti\ if so, take the table index and assign it to c*; if si is not in the table find the 

next open slot (starting from slot 0), insert Si, and assign the index to Cj. The 

compression technique is illustrated in Figure 7.7. This compression will fail to 

save memory when there are too many unique Si parts, because then the table
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Figure 7.7: State vector compression via intermediate tables.

ti becomes too large, or if a fixed table size is assumed, the table overflows. 

Thus this compression method is only suitable for models where each sj part 

only has k 2ni unique states. There is also a break even point in the number 

of states that need to be generated before the memory used for the tables is 

offset. This value can be calculated as follows:

Let jS'j be the number of states generated. Memory will be saved when 

the memory used without compression is greater than the memory required if 

compression is used. Therefore,

p p p
i s i E  rii > I'S'I 'Ŝ2,loQ 2ki T '^2  mini

i = 0  i = 0  i= Q

and thus if,

| cl  >  m i n i______

1 1 E L o  n i ~  E L o  l ° 9 2 h

This is read as: the number of states visited must be larger than the number 

of bits in the tables divided by the number of bits saved in each state. This fits 

in nicely with the intuition that the method will only work well if the tables
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are relatively empty, i.e. each Si part only has a few unique states.

7 .2 .3  Im p lem en ta tio n

The graph encoding using OBDDs and the state compression method were 

developed before the AltMC model checker and has not yet been added to the 

system. However implementations of both techniques exist for the SPIN model 

checker [VB96]. The following conclusions can be drawn from the results of 

using the two techniques when model checking four example systems within 

SPIN:

O B D D  S tore: This was a failure since the number of bits in the state vector 

when using SPIN is too high (often >  500 bits). Note, the efficiency of the 

operations on the OBDD is dependent on the number of boolean variables 

in the OBDD and this number is in turn dependent on the number of bits 

in the state vector.

C om pression  +  H ash  Table: This gave the best results. The compression 

of the state vector reduced the memory required (four fold), but with 

an acceptable time overhead (1.46 times in the worst-case) over the case 

where a hash table was used by itself. Furthermore, in some cases the 

compression reduces the state vector length enough that time is actually 

saved since the hashing function executes faster.

C om pression  +  O B D D : This combination achieved the best memory reduc

tion, but on average took an order of magnitude longer to complete than 

when just a hash table is used.

7 .2 .4  R e la te d  W ork

The work presented here on state compression and the OBDD results store, is 

an adaptation of the version that was originally published in [VB96]. At the
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same time, Gregoire introduced another form of graph encoding, called GE-sets 

(Graph Encoded Sets) [Gre96] that encodes states at a higher level than OBDDs 

and is custom-made for use within SPIN. More recently, Puri and Holzmann, 

also investigated the use of graph encodings in SPIN [HP98].

In [Hol97b] Holzmann gives extensions of the basic state compression idea 

given here, called recursive indexing, and also implements it in the SPIN system. 

A two-phase compression is also given, where a second phase is used with larger 

tables, if during the first phase a table overflows.

7.3 M odel Checking Rainbow Designs

Here we show the use of AltMC for checking properties of asynchronous hard

ware designs described in the Rainbow framework. We first outline the Rainbow 

framework for giving compact design representations, and then illustrate how 

this can lead to a reduction in the size of model generated.

The Rainbow asynchronous design framework offers a suite of unified de

sign and modelling languages for giving mixed-view hierarchical descriptions 

of asynchronous micropipeline systems. Rainbow includes a control-flow se

quential language, called Yellow, that is similar to OCCAM[Bur8 8 ], but uses 

an Ada-like rendezvous. A (static) dataflow-style language called Green uses 

micropipeline communication as primitive, thus hiding lower-level handshaking 

control components — we will concentrate on the latter here.

Micropipeline communication between sender and receiver components in

volves a 3-part handshake: a request control signal from the sender indicates 

that it is ready to offer some data, the receiver reads the data, and then gives 

an acknowledge signal to the sender. In Rainbow, the micropipeline communi

cation is atomic, both at the user-language level — only a single (data) chan

nel and the data transfer activity on the channel is seen by the designer —
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and at the semantic level. In other modelling approaches, using for example 

CCS[Mil80, Mil89], OCCAM or PROMELA, the full handshake must be ex

plicitly encoded, by the user and in the semantics, because the communication 

primitive is simply a synchronisation.

Green components include a (state-full) buffer node which can either read 

a value on its input channel when empty, or output a value when full. Other 

nodes are stateless; once the required values are present on their inputs, then 

the outputs can be generated, but the inputs are not released until all the 

outputs have been consumed. There is no implicit buffering between nodes.

A common underlying formal semantics for the component languages is 

given via a translation to a process term language called APA whose semantics 

is in turn  defined using SOS-style transition rules. The semantics ensures that 

full interworking between components is supported at the micropipeline level, 

and provides the basis for formal analysis of designs. The APA transition rules 

are used for generating the states of the Kripke structure during model checking.

7.3 .1  E xam p le: A d d ress In terface

Figure 7.8 shows the top-level hierarchical Green dataflow description of a sim

plified version of the AMULET1 microprocessor address interface[Pav94]. We 

first outline its behaviour: it performs several functions, so that only one mem

ory address port MemOut is required on the processor. It generates sequences of 

increasing PC addresses, by cycling values through PC-MemAddr-Inc; these are 

used to fetch instructions in sequence from memory. It may also receive exter

nal requests (from the execute unit in the processor) modelled by the EXEJnput 

node. This introduces data read/write address values, which need to be passed 

to MemOut but do not enter the loop — in these cases, Arb suspends the normal 

PC value generation. Also, branch addresses can be input, so that the old PC 

value is replaced by the new branch value — it is therefore necessary to identify
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Throw

M emOut

Figure 7.8: Green Description of Address Interface.

‘old’ and ‘new’ PC values, and this is achieved by tagging them with a ‘colour’, 

toggling this for every new value. The Fork node only passes on to Mem Add r 

those PC values which match the current colour, and discards those that do 

not (Throw). The Lock node ensures that a new branch PC value can only 

be introduced when the old value has been discarded. In this model, we are 

interested mainly in the control and flow of address values in the interface, and 

so we can ignore the actual values given for each address, simply representing 

each one by its type (PC address or Data address) and its colour (red or green).

The design has the following state-full components: it has three data-buffers 

2 in the PC node (PCI, PC2), and MemAddr. Nodes Fork and EXEJnput store 

copies of the current colour and the Lock token is used to control branch address 

generation. In the initial state of the system both the buffers in the PC node are 

empty, the Lock is not set (i.e. Lock buffer is empty), and a green PC address 

is in the MemAddr buffer.

This version, with 2 buffers in PC will be shown below to be deadlock-free. 

However the 1 buffer version can be shown to deadlock.
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7 .3 .2  A n a ly sis

A state of the Kripke structure for a Rainbow design contains only the states 

of the buffers indicated above.

AltMC can now be used to analyse the properties of the design. The results 

are shown in Table 7.1, giving the number of states that need to be stored and 

the time required to check a selection of formulas for both the 2 -buffer and 

1-buffer versions of the interface.

Design Formula AltMC SPIN
States Time States Time

1 2-buf Deadlock 274 31s 7615 7s valid
2 2-buf AG(PC ->XF(Throw V PC)) 97 4s 405 0.9s invalid
3 2-buf AG (PC —»(GF(DataAddr) 

V XF(Throw V PC)))
920 80s 15710 21s valid

4 1-buf Deadlock 66 4s 51 0.6s invalid

Table 7.1: Analysis Results

We added to the model checker a Deadlock detection function tha t checks 

whether every reachable state of a system has at least one successor. A deadlock 

check for the Green version of the 2 -buffer interface reports no deadlocks after 

examining all 274 reachable states of the system (row 1 in Table 7.1). A second 

useful property to be checked is that if there is a value in PC, then either it has 

the wrong colour and will be discarded by Fork (i.e. it will reach Throw) or it 

will again reach PC (row 2 ). However, this is invalid, since Arb may (unfairly) 

choose forever to accept data address values (DataAddr) from EXEJnput. When 

this possibility is allowed for in the formula (CGF (DataAddr)’ in row 3) then 

the property is valid. This is an example of weak fairness being enforced on 

the behaviour of the address interface. Note also that, in accordance to the 

classifications given in section 6.5.1 this formula can be expressed as CTL. 

Finally, the deadlock in the 1-buffer version of the address interface is found 

(row 4).
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7.3 .3  U sin g  P R O M E L A /S P IN  to  C heck  P ro p er tie s

The address interface was also modelled in PROMELA, the input language of 

the LTL model checker SPIN. PROMELA simply uses synchronisation as the 

atomic communication between channels. This exposes the handshaking proto

col between the components that was hidden in the Green model; consequently 

the address interface model is much larger (7615 states). The SPIN model 

checker also contains a built-in deadlock detection function which we used to 

establish that the PROMELA version of the interface is deadlock free. The 

results for checking the other LTL formulas in SPIN are shown in Table 7.1. It 

would also be interesting to compare results with those obtained from a CCS 

model of the address interface, using the approach advocated in [Liu95].

7 .3 .4  O b servations

From the timings given in Table 7.1 it can be seen that SPIN is faster than 

AltMC (it examines more states per second). This is to be expected, since, 

unlike SPIN, AltMC is a new system that has not yet been redesigned for high 

performance3.

A more interesting observation is that for both AltMC and SPIN when a 

property is invalid (rows 1 and 4 in Table 7.1) a counter example is found very 

quickly. In fact, it is our experience with using both SPIN and AltMC to check 

numerous systems that a counter example is often found, if one exists, by only 

examining a small portion of the reachable state space.

In the Rainbow framework a counter example is illustrated on the Green 

level by showing how the data flows in the system from the initial state to 

the one in which the counter example was found. Obviously, a short counter 

example will be desired over a long one, since it will be easier to follow. In

3 Currently, nearly 80% of the time used to check a property of a Rainbow design is spent 
in the Execution Unit to generate a new state. This is an obvious area for improvement.



www.manaraa.com

CHAPTER 7. IM PLEM ENTATION ISSUES 155

section 5.2.3 it was mentioned that when a choice exists for a player’s next 

move we always make a move to a lower Si set first; this has the effect of first 

examining state subformulas of a formula before the formula itself. This has the 

interesting side-effect of producing a “short” counter example (if one exists). 

Note however, since the successor states in the Kripke structure are examined 

in a depth-first fashion, we cannot guarantee to always get the shortest possible 

counter example.

7.4 Concluding Remarks

The designs we have model checked in the Rainbow framework have been fairly 

small until now, but we envisage this to change with the increase of new users. 

Therefore, although it is not currently required, state compression to reduce 

the memory required and partial order methods to reduce the search space will 

be added to AltMC in the near future.

The SPIN model checker is an example of a system that does not adhere 

to the structure described in section 7.1. In fact most of the Games and State 

Generator components reside in one function in SPIN (called new_state). This 

function is very long (928 lines4) and difficult to follow for all but the most 

experienced SPIN users. An interesting exercise would be to rewrite this code 

to follow the structure in Figure 7.2. SPIN is coded in the way it is for speed 

efficiency and therefore it would be of interest to see the trade-off between 

readability (understandability) and speed, when rewriting it in a structured 

way.

Currently, AltMC can check designs described in a reachability graph for

malism or a design in the Rainbow framework. The next formalism to be added 

will be PROMELA, since this will allow the vast number of PROMELA designs

4SP1N version 3.0.0
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existing already to be checked for CTL* correctness properties rather than the 

current LTL properties.



www.manaraa.com

Chapter 8

C onclusions

The main goal of this thesis was to develop an efficient model checking algorithm 

for CTL*. In order to achieve this an automata-theoretic approach was taken, 

whereby the model checking problem was reduced to checking the nonemptiness 

of HAA. The nonemptiness check was recast as a two-player game which relies 

on the novel approach of playing new games to enable the safe reuse of previous 

results. It was shown how these games can be optimised depending on the 

structure of the HAA and therefore allowed not only efficient model checking 

for CTL* but also for the sublogics CTL and LTL.

Furthermore, in the setting of the nonemptiness game for HAA, the playing 

of new games can be used as a measure for the complexity of the algorithm. This 

leads to the, somewhat unexpected, result that the nonemptiness games when 

model checking CTL are in general more complex than when LTL formulas 

are being checked. When this is combined with the fact that formulas being 

checked are small in practice, and hence do not exhibit the exponential size 

increase that may occur in general, shows that LTL model checking is easier 

than CTL model checking in the nonemptiness game setting.

This is to the best of our knowledge the first time LTL and CTL model

157
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checking have been compared in a unified setting. Previously, either one or the 

other type of model checker was taken as a basis:

• CTL model checking with an LTL model checker [BCG95]

• LTL model checking with a CTL model checker [CGH94],

Is the nonemptiness game an appropriate setting to compare the model 

checking complexity of CTL and LTL? We argue that it is when considering 

practical model checking, i.e. model checking capable of handling industrial- 

scale examples. Although both time and space efficiency are required of a 

practical algorithm, it is often the case that space is traded for time, since 

waiting longer for a result is more acceptable than getting no result at all 

(i.e. the “out of memory” message). The new games being played during 

the nonemptiness game can be seen as a way of avoiding building strongly 

connected components in the product automaton. The nonemptiness game 

therefore trades space for time. Another characteristic that can save both 

space and time is the fact that the nonemptiness game is a local algorithm,

i.e. only the part of the product automaton required to label the initial state 

is traversed.

Just as alternating automata generalise nondeterministic automata, the 

nonemptiness game for HAA can be seen as a generalisation of the nested 

depth-first search for efficient nonemptiness checking of nondeterministic Biichi 

automata. In fact, the nonemptiness game algorithm is equivalent to the nested 

depth-first algorithm when LTL model checking is considered. We therefore 

claim that in a similar fashion as the link between LTL and nondeterminis

tic automata led to the development of efficient model checking algorithms for 

LTL, the nonemptiness game shows that the link between CTL* and alternating 

automata also leads to efficient model checking algorithms for CTL*.

The thesis also addresses a long standing open problem [CD8 8 ]: for a given
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CTL* formula does there exist an equivalent CTL formula? We show that the 

relationship between 1-HAA and CTL formulas can be exploited in order to 

answer this question. We believe that we even have an algorithm to construct 

the equivalent CTL formula for a CTL* formula if one exists. This algorithm is 

however based on the assumption that our translation from the CTL* formula 

to an HAA will always yield a 1-HAA if one exists. This assumption is not yet 

proven to hold, but we strongly believe it is the case. Furthermore, with the aid 

of this result we show that for the sublogic of CTL* containing all the formulas 

that can be expressed in both LTL and CTL, very efficient model checking is 

possible.

Next we consider some areas for future work: improving the system (par

tial order rules), new implementations (parallel model checking), model check

ing more expressive logics (ECTL*) and using alternating automata for model 

checking the //-calculus.

In section 6.5.3 it was mentioned that partial order rules for LTL are more 

efficient than when a non-LTL formula is checked and therefore if we can de

termine from the HAA for the formula whether it has an LTL equivalent the 

more efficient rules can be used. However, we believe a finer distinction can be 

made on when to use linear time partial order rules and when to use branching 

time rules in a similar fashion to the classification for the Si sets of the HAA 

for the formula given in Table 6.2. One possibility would be to use the linear 

time rules whenever a game is played from a position in a one-player set.

The nonemptiness game for HAA we describe here trades space for time, 

hence ways of making the algorithm faster need further investigation. We be

lieve one way of improving the speed is to exploit the advances in computer 

hardware. Specifically we are interested in parallel architectures. Parallel algo

rithms for model checking have not been an active area of research, and only
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a few examples exist and most of these are centred around developing paral

lel implementations of operations on OBDDs [LR93, SB96, SD96]. The main 

reason for parallel model checking not being very popular is the belief that 

communication overheads between different processors outweigh any efficiency 

increase gained from doing work in parallel. This is often true when the proces

sors are distributed over a network, hence we propose to use a shared-memory 

multi-processor architecture for efficient parallel model checking. Furthermore, 

the new games being played within the nonemptiness game present a natural 

avenue for parallelisation: a new game can be played on a different processor, 

while the game that spawned it continues, and needs only read access to the 

results store of the original game. Developing a parallel implementation of the 

nonemptiness game together with the definition of sublogics of CTL* for which 

parallel model checking can be done efficiently (which ties in with the partial 

order work mentioned above) will form the basis of future work within our 

group.

Currently the model checker can only take a CTL* formula to be checked 

as input, however, it is a simple extension to enable the system to take any 

HAA as input. This would allow a larger class of properties to be checked than 

CTL*. For example the property that proposition p will only hold at all even 

moments, given in Figure 6.6, can be checked for a reactive system. In fact, it 

is easy to see that the nonemptiness game can check ECTL* [VW83] formulas. 

ECTL* is the extended version of CTL* where each path formula can be as 

expressive as w-regular expressions, and therefore Biichi automata.

Can the nonemptiness game be of any use in //-calculus model checking? 

Since ECTL* can be shown to be as expressive as the L 2 fragment of the //- 

calculus introduced in [EJS93], the nonemptiness game can check formulas in 

this fragment of the //-calculus. Unfortunately, but not unexpectedly since it 

would have given the elusive polynomial model checking algorithm, the full 

//-calculus cannot be translated to HAA and hence cannot be checked by the
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nonemptiness game. Interestingly, not even the alternation free fragment can 

be translated to HAA, and it is well known that this fragment can be model 

checked in linear time [CS91]. Alternation free /i-calculus formulas can however 

be translated to WAA [Ber95]. This, we believe, indicates that there are other 

classes of WAA (except for HAA) for which efficient model checking is possible. 

Furthermore, full /^-calculus formulas can be translated to alternating Rabin 

automata [Ber95], hence finding practical algorithms for such automata will be 

most interesting.

The work presented here is an attem pt to make formal verification more 

appealing for use in industry by showing that practical model checking can be 

done for CTL*. Although it has been shown that the algorithm is at least as 

efficient as existing LTL and more efficient than existing practical CTL model 

checking algorithms, to show its true value it is most important that it is now 

applied in the model checking of industrial-scale examples. So far we have ob

tained very encouraging results from analysing asynchronous hardware designs 

expressed in the Rainbow framework.
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Appendix A

O B D D  B ased M odel Checking

A brief introduction to OBDDs is given in section A .l followed by three sections 

describing how they are used for model checking.

A . l  O r d e r e d  B i n a r y  D e c i s i o n  D i a g r a m s

Ordered binary decision diagrams (OBDDs) are directed acyclic graphs that 

represent boolean functions in a canonical form. As an example, let us consider 

the OBDD that represents the function /(a;i, £ 2  5 £3) =  ^ ^ 2^ 3 + ^ 1* 2* 3 + ^ i^ 2^ 3 ) 

where • denotes the AND operation and +  the OR operation. The decision tree 

for this function is given in Figure A.l. Left branches from a node indicates 

the variable is 0 (false) and similarly right branches indicate value 1 (true). 

Terminal nodes are labelled with T  for true and F  for false. To construct 

the OBDD representation of /  a total ordering on the variables of /  must 

be imposed. In Figure A .l this ordering is £ 1  < X2 < £3 . There are three 

transformation rules on these graphs, that do not alter the function represented, 

but may reduce their size. An OBDD is the name given to the graph that cannot 

be reduced any further. The rules are:

162
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Figure A.l: Decision tree for the boolean function f ( x  1 , 0:2 ,£ 3) =  x i - % 2 -£ 3  +
Xi-X2'%3 +  Xi ' X2' Xs

R em ove D u p lica te  T erm inals There must remain only one terminal with a 

given label. All arcs to duplicate labelled terminals must be redirected to 

the remaining one. A further optimisation that is not strictly required, is 

not to show any arcs leading to F, although they are implicitly there. In 

Figure A.2 this optimisation is performed on the decision tree for / .

Figure A.2: Removing duplicate T  terminals and explicit F  terminals from the 
decision tree of /

R em ove D u p lica te  N o n te rm in a ls  If two nonterminal nodes have the same 

label and their left and right branches are the same then one must be 

removed. All arcs must be redirected to the remaining one. This is shown 

in Figure A.3 where the three nodes labelled x$ (with left arc to T  and
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right to F) in Figure A .2  have been replaced by one x% node.

Figure A.3: Removing duplicate nonterminals.

R em ove R e d u n d a n t T ests If both arcs from a nonterminal, say n, point 

to the same node, say n \  then n must be removed and all its incoming 

arcs must be redirected to n1. In Figure A.3 the left-hand X2 is such a 

redundant node since both its left and right arc point to £3 . The OBDD 

for /  is shown in Figure A.4 after this last transformation is performed.

Figure A.4: OBDD for function /  after removing redundant tests.

These rules must be applied repeatedly, since the application of one rule can 

cause more transformations to be possible on the resulting graph.
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A . 2  R e p r e s e n t i n g  R e l a t i o n s  w i t h  O B D D s

OBDDs can provide extremely concise representations of relations over finite 

domains. If R  is a n-ary relation over {0,1} then R  can be represented by an 

OBDD for its characteristic function / r , where

f R{x i, . . . , x n) = l  iff R{x i,

In order to construct complex relations it is convenient to extend proposi- 

tional logic to permit quantification over boolean variables. The resulting logic 

is called QBF (Quantified Boolean Formulas). Given a set V  = {iq, . . . ,  vn} of 

propositional variables, Q BF(V)  is the smallest set of formulas such that

• true and fa lse  are formulas

• every variable in V  is a formula

• if p and q are formulas, then -ip and p V g  are formulas

• if p is a formula and v G V, then 3vp is a formula.

A truth assignment for Q BF (V )  is a function a : V  —> {false, true}. Each QBF 

formula is equated with the set of tru th  assignments that satisfy the formula. 

Thus, true represents the set of all tru th  assignments, and false the empty set. 

A propositional variable v represents the set of all tru th  assignments a such 

that a(v) — true. Furthermore,

1. a G (p V q) iff a G p  or a G q,

2. a G (-ip) iff a $  p, and

3. a G (3i;p) iff trfifrue^] G p or cr[false\v\ G p.

In order to represent a QBF formula with an OBDD, we only need to show the

representation of 3vp. This is given by the following OBDD, if p  is given by an
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OBDD:

3vp = p\v^ fa l se A  true

where p l ^ ^ a q ,  p{x i, * • ■, a^_i, 6 , ®i+i, • • •, x n) and +  is the or oper

ation for OBDDs.

As will be seen in the next section, the quantification required during model 

checking of CTL specifications will be of the form:

3v\p(v) A g(v)]

Thus, an efficient implementation of this relational product is required. The 

algorithm in Figure A.5, taken from [CGL93], computes the above relational 

product in one pass over the OBDDs p(v) and q(v). An important observation is 

that this algorithm computes the relational product without ever constructing 

the OBDD for p(u) A q(v), which can be very large. It also makes use of a 

result cache to avoid doing unnecessary work. Cache entries are of the form 

(p, g, _E, h) where E  is a set of variables that are quantified out and p, q and h 

are OBDDs. If an entry is in the cache, it means that a previous call to the 

function returned h as its result.

A .3 Fixpoint Characterizations of CTL

Clarke and Emerson showed that CTL operators can be characterized by ex

tremal fixed points of appropriate functionals[CE81]. Let M  = (S ,R ,L ) be 

an arbitrary finite Kripke structure. Let Pred(S) denote the lattice of predi

cates over S  where each predicate is identified with the set of states in S  that 

make it true (the ordering is set inclusion). The least element in the lattice is 

therefore the empty set (false) and the greatest element is the set of all states 

(true). A functional r  : Pred(s) —> Pred(s) is called a predicate transformer. 

By definition,
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Function RelProd(p,q: OBDD, E: set of variables): OBDD 
BEGIN

IF(p=false) OR (q=false) THEN 
RETURN false;

ELSIF (p=true) AND (q=true) THEN 
RETURN true;

ELSIF (p,q,E,h) in cache THEN 
RETURN h;

ELSE
let x be the top variable of p; 
let y be the top variable of q; 
let z be the top variable of x and y;
h0 := RelProd(pU=0,gU=o,E); 
hi := RelProd(p|^=i,g jz=i,E);
IF* £ E  THEN 

h := OR(ho, hi);
/* OBDD for h0 V hi */

ELSE
h := IfThenElse(z,hi,ho);
/* OBDD for (z A hi) V {^z  A h0) */

END;
insert (p,q,E,h) in cache;
RETURN h;

END
END

Figure A.5: Relational Product Algorithm.
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1. t  is monotonic when P  C Q implies r[P] C r[Q]

2. r  is U-continuous provided that Pi C P2 C . . .  implies T[UjPj] =  lhr[Pj]

3. r  is Pi -continuous provided that Pi D P2 D . . .  implies rfDjPi] =  Dir[Pf]

When S' is finite, every increasing(decreasing) chain of subsets has a max

imum (minimum) element. Therefore, in the finite case, monotonicity implies 

U-continuity and fl-continuity. Tarski [Tar55] showed that a monotonic func

tional always has a least and a greatest fixed point with respect to inclusion 

ordering:

Theorem  5 (Tarski-Knaster) Ifr[Y] is monotonic, it has a least fixed point, 

/iT.r[T], and a greatest fixed point, vY.r\Y]. I f  r[Y] is also U-continuous, 

/iY.r[Y] =  Ui>oP{false). Ifr \Y ]  is also D-continuous, i/Y.r[Y] =  fli>or l (true).

The CTL operators can now be characterized as a least or greatest fixpoint 

of an appropriate predicate transformer:

Theorem  6 (Clarke-Em erson) I f  we identify each CTL formula f  with the 

predicate {s|M, s \= f }  in Pred(S) and provided S  is finite then

• A\p U q] = pZ.[q V (p A A X  Z)]

• E\p U q]~  pZ.[q V (p A E X  Z)]

• AFp = fj,Z. [p V A X  Z]

• E F p = pZ .\pV  E X  Z\

• AGp = vZ. [p A A X  Z]

• EGp = v Z .\p A E X  Z]
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Function (/iY.T[Y]{i/Y.r[Y]})
BEGIN

Y := false; {Y := true}
DO Y '  := Y] Y  := r[Y]; UNTIL Y  = Y';
RETURN Y;

END

Figure A.6 : Calculate Least (Greatest) fixpoint.

The algorithm to calculate the least (greatest) fixpoint of a monotonic func

tional is shown in Figure A.6 . It works by starting of with false (true) and 

iterating the functional until a fixed point is reached. Assuming S  is finite, the 

algorithm will terminate in at most |il?| + 1  iterations.

Let us consider the mutual exclusion example from section 2.2.1. Consider 

the validation of the following precedence property: A(-i(Ci V C2) U S\). The 

predicate transformer r  will be given by

r(Z )  =  Si V (--(Ci V C2) A A X  Z )

Thus, t 1 (false) =  Si V (~>(Ci V C2) A A X  false)  — Si. Therefore t 1 (false) 

is all the states with Si as part of the state. From Figure 2.1, it therefore fol

lows that after the first iteration the set of states r 1 (false) contains {(CilV2Si) 

,(C iT 2Si), (TiC2 Si), (jV"iC2 Si)}. Repeating the process, after the next itera

tion, r 2(false) — r 1 (false) U{(TijV2So), (TiT2 So), (AhT2So)}. After the third 

iteration r 3 (false) contains all the reachable states in the model. Therefore af

ter four iterations we get a fixpoint, r 4 (false) — r 3 (false). Since this fixpoint 

contains all the reachable states, the CTL formula holds for this model.

A .4  M odel Checking Algorithm

In this section a model checking algorithm for CTL which uses OBDDs to 

represent the state transition graph will be described. The state of a concurrent
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system is given by a vector of bits called the state vector. Assume this state 

vector consists of n boolean state variables iq, V2 , - ■ ■, vn. The transition relation 

R (v,v ')  for the concurrent system will be given as a boolean formula in terms 

of the state variables: v — (-iq,. . . ,  vn) which represent the current state and 

v' = which represent the next state. The formula R (v ,v ')  is now

converted to an OBDD.

The symbolic model checking algorithm is implemented by a procedure 

M Check  that takes the CTL formula to be checked and the OBDD for R (vyv') 

as its arguments and returns the OBDD representing the set of states that 

satisfy the formula. M Check  is defined inductively over the structure of CTL 

formulas. If formula /  is an atomic proposition Vi then M C h eck (f, R) is simply 

the OBDD for Vi. The formulas E X  / ,  E [f U g] and EG f  are handled as 

follows:

M C heck(E X  f ,R )  =  M C heckE X {M C heck{f,R )) 

M C heck(E[f U g],R) = M C heckE U {M C heck{f,R ),M C heck{g ,R )) 

M Check(EG  f ,R )  =  M C heckE G {M C heck{f,R ))

Since A X  / ,  A [f U g] and AG f  can all be rewritten using the above operators, 

this definition of M Check covers all CTL formulas.

The procedure for M C heckE X  is straightforward since the formula E X  f  

is true in a state if the state has a successor in which /  is true.

M C heckE X (f(v )) = 3v'[f{v') A tf(u,?/)]

If we have OBDDs for /  and R, then we can compute an OBDD for

3v'[f(v) A

by using the techniques described in section A.2 (figure A.5).

The procedure for M C heckEU  is based on the least fixpoint characterisa

tion for the CTL operator EU that is given in the previous section.

M C heckE U (f{v),g{v)) =  iiZ(v)[g{v) V (f{v) A M C heckE X  (Z(v)))]
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Here the function in Figure A .6  is used to calculate a sequence of approxi

mations, Qo> Q1 , • ■■ ? Qi j ■ • • that converges to E[ f  U g] in a finite number of 

steps. If we have OBDDs for / ,  g and the current approximation Q i, then we 

can compute an OBDD for the next approximation Qi+\. Since OBDDs pro

vide a canonical form of boolean formulas, it is easy to test for convergence by 

comparing consecutive approximations. When Qi = Qj+i, the function for the 

least fixpoint terminates. The set of states corresponding to E [f U </] will be 

represented by the OBDD for for Q{.

M CheckEG  is similar, but is based on the greatest fixpoint characterisation 

for the CTL operator EG:

M C heckE G (f(v)) =  uZ{v)[f(v)  A M CheckEX(Z{v))}

If we have an OBDD for / ,  then the function for the greatest fixpoint from 

Figure A .6  can be used to compute an OBDD representation for the set of 

states that satisfy EG  f .

The CTL model checker SM V  [McM92a] is one of the best exponents of 

OBDD based symbolic model checking and is being used by Intel and IBM 

as the basis for some of their model checking efforts. In [CGH94] it is shown 

how the SMV model checker can also be used to do LTL model checking, by 

translating the LTL formula to a CTL formula with fairness constraints.
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